EconPapers    
Economics at your fingertips  
 

Epigenetic gene silencing by heterochromatin primes fungal resistance

Sito Torres-Garcia, Imtiyaz Yaseen, Manu Shukla, Pauline N. C. B. Audergon, Sharon A. White, Alison L. Pidoux and Robin C. Allshire ()
Additional contact information
Sito Torres-Garcia: University of Edinburgh
Imtiyaz Yaseen: University of Edinburgh
Manu Shukla: University of Edinburgh
Pauline N. C. B. Audergon: University of Edinburgh
Sharon A. White: University of Edinburgh
Alison L. Pidoux: University of Edinburgh
Robin C. Allshire: University of Edinburgh

Nature, 2020, vol. 585, issue 7825, 453-458

Abstract: Abstract Heterochromatin that depends on histone H3 lysine 9 methylation (H3K9me) renders embedded genes transcriptionally silent1–3. In the fission yeast Schizosaccharomyces pombe, H3K9me heterochromatin can be transmitted through cell division provided the counteracting demethylase Epe1 is absent4,5. Heterochromatin heritability might allow wild-type cells under certain conditions to acquire epimutations, which could influence phenotype through unstable gene silencing rather than DNA change6,7. Here we show that heterochromatin-dependent epimutants resistant to caffeine arise in fission yeast grown with threshold levels of caffeine. Isolates with unstable resistance have distinct heterochromatin islands with reduced expression of embedded genes, including some whose mutation confers caffeine resistance. Forced heterochromatin formation at implicated loci confirms that resistance results from heterochromatin-mediated silencing. Our analyses reveal that epigenetic processes promote phenotypic plasticity, letting wild-type cells adapt to unfavourable environments without genetic alteration. In some isolates, subsequent or coincident gene-amplification events augment resistance. Caffeine affects two anti-silencing factors: Epe1 is downregulated, reducing its chromatin association, and a shortened isoform of Mst2 histone acetyltransferase is expressed. Thus, heterochromatin-dependent epimutation provides a bet-hedging strategy allowing cells to adapt transiently to insults while remaining genetically wild type. Isolates with unstable caffeine resistance show cross-resistance to antifungal agents, suggesting that related heterochromatin-dependent processes may contribute to resistance of plant and human fungal pathogens to such agents.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2706-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2706-x

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2706-x

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2706-x