Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings
Shang Gao,
H. Diego Rosales,
Flavia A. Gómez Albarracín,
Vladimir Tsurkan,
Guratinder Kaur,
Tom Fennell,
Paul Steffens,
Martin Boehm,
Petr Čermák,
Astrid Schneidewind,
Eric Ressouche,
Daniel C. Cabra,
Christian Rüegg and
Oksana Zaharko ()
Additional contact information
Shang Gao: Paul Scherrer Institut
H. Diego Rosales: Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), UNLP-CONICET, Facultad de Ciencias Exactas
Flavia A. Gómez Albarracín: Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), UNLP-CONICET, Facultad de Ciencias Exactas
Vladimir Tsurkan: University of Augsburg
Guratinder Kaur: Paul Scherrer Institut
Tom Fennell: Paul Scherrer Institut
Paul Steffens: Institut Laue-Langevin
Martin Boehm: Institut Laue-Langevin
Petr Čermák: Jülich Center for Neutron Science, Heinz Maier-Leibnitz Zentrum, Forshungszentrum Jülich GmbH
Astrid Schneidewind: Jülich Center for Neutron Science, Heinz Maier-Leibnitz Zentrum, Forshungszentrum Jülich GmbH
Eric Ressouche: Université Grenoble Alpes, CEA, INAC-MEM
Daniel C. Cabra: Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), UNLP-CONICET, Facultad de Ciencias Exactas
Christian Rüegg: University of Geneva
Oksana Zaharko: Paul Scherrer Institut
Nature, 2020, vol. 586, issue 7827, 37-41
Abstract:
Abstract Magnetic skyrmions are topological solitons with a nanoscale winding spin texture that hold promise for spintronics applications1–4. Skyrmions have so far been observed in a variety of magnets that exhibit nearly parallel alignment for neighbouring spins, but theoretically skyrmions with anti-parallel neighbouring spins are also possible. Such antiferromagnetic skyrmions may allow more flexible control than conventional ferromagnetic skyrmions5–10. Here, by combining neutron scattering measurements and Monte Carlo simulations, we show that a fractional antiferromagnetic skyrmion lattice is stabilized in MnSc2S4 through anisotropic couplings. The observed lattice is composed of three antiferromagnetically coupled sublattices, and each sublattice is a triangular skyrmion lattice that is fractionalized into two parts with an incipient meron (half-skyrmion) character11,12. Our work demonstrates that the theoretically proposed antiferromagnetic skyrmions can be stabilized in real materials and represents an important step towards their implementation in spintronic devices.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41586-020-2716-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:586:y:2020:i:7827:d:10.1038_s41586-020-2716-8
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-020-2716-8
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().