EconPapers    
Economics at your fingertips  
 

Building cratonic keels in Precambrian plate tectonics

A. L. Perchuk (), T. V. Gerya, V. S. Zakharov and W. L. Griffin
Additional contact information
A. L. Perchuk: Geological Faculty, Lomonosov Moscow State University
T. V. Gerya: Swiss Federal Institute of Technology Zurich, Department of Earth Sciences
V. S. Zakharov: Geological Faculty, Lomonosov Moscow State University
W. L. Griffin: Australian Research Council Centre of Excellence for Core to Crust Fluid Systems/GEMOC, Macquarie University

Nature, 2020, vol. 586, issue 7829, 395-401

Abstract: Abstract The ancient cores of continents (cratons) are underlain by mantle keels—volumes of melt-depleted, mechanically resistant, buoyant and diamondiferous mantle up to 350 kilometres thick, which have remained isolated from the hotter and denser convecting mantle for more than two billion years. Mantle keels formed only in the Early Earth (approximately 1.5 to 3.5 billion years ago in the Precambrian eon); they have no modern analogues1–4. Many keels show layering in terms of degree of melt depletion5–7. The origin of such layered lithosphere remains unknown and may be indicative of a global tectonics mode (plate rather than plume tectonics) operating in the Early Earth. Here we investigate the possible origin of mantle keels using models of oceanic subduction followed by arc-continent collision at increased mantle temperatures (150–250 degrees Celsius higher than the present-day values). We demonstrate that after Archaean plate tectonics began, the hot, ductile, positively buoyant, melt-depleted sublithospheric mantle layer located under subducting oceanic plates was unable to subduct together with the slab. The moving slab left behind craton-scale emplacements of viscous protokeel beneath adjacent continental domains. Estimates of the thickness of this sublithospheric depleted mantle show that this mechanism was efficient at the time of the major statistical maxima of cratonic lithosphere ages. Subsequent conductive cooling of these protokeels would produce mantle keels with their low modern temperatures, which are suitable for diamond formation. Precambrian subduction of oceanic plates with highly depleted mantle is thus a prerequisite for the formation of thick layered lithosphere under the continents, which permitted their longevity and survival in subsequent plate tectonic processes.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2806-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:586:y:2020:i:7829:d:10.1038_s41586-020-2806-7

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2806-7

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:586:y:2020:i:7829:d:10.1038_s41586-020-2806-7