EconPapers    
Economics at your fingertips  
 

The impact of nuclear shape on the emergence of the neutron dripline

Naofumi Tsunoda, Takaharu Otsuka (), Kazuo Takayanagi, Noritaka Shimizu, Toshio Suzuki, Yutaka Utsuno, Sota Yoshida and Hideki Ueno
Additional contact information
Naofumi Tsunoda: The University of Tokyo
Takaharu Otsuka: The University of Tokyo
Kazuo Takayanagi: Sophia University
Noritaka Shimizu: The University of Tokyo
Toshio Suzuki: Nihon University
Yutaka Utsuno: The University of Tokyo
Sota Yoshida: Utsunomiya University
Hideki Ueno: RIKEN Nishina Center

Nature, 2020, vol. 587, issue 7832, 66-71

Abstract: Abstract Atomic nuclei are composed of a certain number of protons Z and neutrons N. A natural question is how large Z and N can be. The study of superheavy elements explores the large Z limit1,2, and we are still looking for a comprehensive theoretical explanation of the largest possible N for a given Z—the existence limit for the neutron-rich isotopes of a given atomic species, known as the neutron dripline3. The neutron dripline of oxygen (Z = 8) can be understood theoretically as the result of single nucleons filling single-particle orbits confined by a mean potential, and experiments confirm this interpretation. However, recent experiments on heavier elements are at odds with this description. Here we show that the neutron dripline from fluorine (Z = 9) to magnesium (Z = 12) can be predicted using a mechanism that goes beyond the single-particle picture: as the number of neutrons increases, the nuclear shape assumes an increasingly ellipsoidal deformation, leading to a higher binding energy. The saturation of this effect (when the nucleus cannot be further deformed) yields the neutron dripline: beyond this maximum N, the isotope is unbound and further neutrons ‘drip’ out when added. Our calculations are based on a recently developed effective nucleon–nucleon interaction4, for which large-scale eigenvalue problems are solved using configuration-interaction simulations. The results obtained show good agreement with experiments, even for excitation energies of low-lying states, up to the nucleus of magnesium-40 (which has 28 neutrons). The proposed mechanism for the formation of the neutron dripline has the potential to stimulate further thinking in the field towards explaining nucleosynthesis with neutron-rich nuclei.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2848-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:587:y:2020:i:7832:d:10.1038_s41586-020-2848-x

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2848-x

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:587:y:2020:i:7832:d:10.1038_s41586-020-2848-x