EconPapers    
Economics at your fingertips  
 

Ultra-sensitive and resilient compliant strain gauges for soft machines

Oluwaseun A. Araromi (), Moritz A. Graule, Kristen L. Dorsey, Sam Castellanos, Jonathan R. Foster, Wen-Hao Hsu, Arthur E. Passy, Joost J. Vlassak, James C. Weaver, Conor J. Walsh and Robert J. Wood ()
Additional contact information
Oluwaseun A. Araromi: Harvard University
Moritz A. Graule: Harvard University
Kristen L. Dorsey: Smith College
Sam Castellanos: Harvard University
Jonathan R. Foster: Wyss Institute for Biologically Inspired Engineering
Wen-Hao Hsu: Wyss Institute for Biologically Inspired Engineering
Arthur E. Passy: École Polytechnique Fédérale de Lausanne (EPFL)
Joost J. Vlassak: Harvard University
James C. Weaver: Harvard University
Conor J. Walsh: Harvard University
Robert J. Wood: Harvard University

Nature, 2020, vol. 587, issue 7833, 219-224

Abstract: Abstract Soft machines are a promising design paradigm for human-centric devices1,2 and systems required to interact gently with their environment3,4. To enable soft machines to respond intelligently to their surroundings, compliant sensory feedback mechanisms are needed. Specifically, soft alternatives to strain gauges—with high resolution at low strain (less than 5 per cent)—could unlock promising new capabilities in soft systems. However, currently available sensing mechanisms typically possess either high strain sensitivity or high mechanical resilience, but not both. The scarcity of resilient and compliant ultra-sensitive sensing mechanisms has confined their operation to laboratory settings, inhibiting their widespread deployment. Here we present a versatile and compliant transduction mechanism for high-sensitivity strain detection with high mechanical resilience, based on strain-mediated contact in anisotropically resistive structures (SCARS). The mechanism relies upon changes in Ohmic contact between stiff, micro-structured, anisotropically conductive meanders encapsulated by stretchable films. The mechanism achieves high sensitivity, with gauge factors greater than 85,000, while being adaptable for use with high-strength conductors, thus producing sensors resilient to adverse loading conditions. The sensing mechanism also exhibits high linearity, as well as insensitivity to bending and twisting deformations—features that are important for soft device applications. To demonstrate the potential impact of our technology, we construct a sensor-integrated, lightweight, textile-based arm sleeve that can recognize gestures without encumbering the hand. We demonstrate predictive tracking and classification of discrete gestures and continuous hand motions via detection of small muscle movements in the arm. The sleeve demonstration shows the potential of the SCARS technology for the development of unobtrusive, wearable biomechanical feedback systems and human–computer interfaces.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2892-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:587:y:2020:i:7833:d:10.1038_s41586-020-2892-6

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2892-6

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:587:y:2020:i:7833:d:10.1038_s41586-020-2892-6