EconPapers    
Economics at your fingertips  
 

Host ANP32A mediates the assembly of the influenza virus replicase

Loïc Carrique, Haitian Fan, Alexander P. Walker, Jeremy R. Keown, Jane Sharps, Ecco Staller, Wendy S. Barclay, Ervin Fodor () and Jonathan M. Grimes ()
Additional contact information
Loïc Carrique: University of Oxford
Haitian Fan: University of Oxford
Alexander P. Walker: University of Oxford
Jeremy R. Keown: University of Oxford
Jane Sharps: University of Oxford
Ecco Staller: Imperial College London
Wendy S. Barclay: Imperial College London
Ervin Fodor: University of Oxford
Jonathan M. Grimes: University of Oxford

Nature, 2020, vol. 587, issue 7835, 638-643

Abstract: Abstract Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge1. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes2,3. RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity4. Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2927-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:587:y:2020:i:7835:d:10.1038_s41586-020-2927-z

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2927-z

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:587:y:2020:i:7835:d:10.1038_s41586-020-2927-z