EconPapers    
Economics at your fingertips  
 

Giant nonlinear optical responses from photon-avalanching nanoparticles

Changhwan Lee, Emma Z. Xu, Yawei Liu, Ayelet Teitelboim, Kaiyuan Yao, Angel Fernandez-Bravo, Agata M. Kotulska, Sang Hwan Nam, Yung Doug Suh (), Artur Bednarkiewicz (), Bruce E. Cohen (), Emory M. Chan () and P. James Schuck ()
Additional contact information
Changhwan Lee: Columbia University
Emma Z. Xu: Columbia University
Yawei Liu: Lawrence Berkeley National Laboratory
Ayelet Teitelboim: Lawrence Berkeley National Laboratory
Kaiyuan Yao: Columbia University
Angel Fernandez-Bravo: Lawrence Berkeley National Laboratory
Agata M. Kotulska: Polish Academy of Sciences
Sang Hwan Nam: Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT)
Yung Doug Suh: Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT)
Artur Bednarkiewicz: Polish Academy of Sciences
Bruce E. Cohen: Lawrence Berkeley National Laboratory
Emory M. Chan: Lawrence Berkeley National Laboratory
P. James Schuck: Columbia University

Nature, 2021, vol. 589, issue 7841, 230-235

Abstract: Abstract Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials1. Photon avalanching enables technologies such as optical phase-conjugate imaging2, infrared quantum counting3 and efficient upconverted lasing4–6. However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates6,7, limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures—small, Tm3+-doped upconverting nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging7 with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods8–10, ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging7,11,12 and optical and environmental sensing13–15.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-03092-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:589:y:2021:i:7841:d:10.1038_s41586-020-03092-9

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-03092-9

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:589:y:2021:i:7841:d:10.1038_s41586-020-03092-9