EconPapers    
Economics at your fingertips  
 

Complex structures arising from the self-assembly of a simple organic salt

Riccardo Montis (), Luca Fusaro, Andrea Falqui, Michael B. Hursthouse, Nikolay Tumanov, Simon J. Coles, Terry L. Threlfall, Peter N. Horton, Rachid Sougrat, Anaïs Lafontaine, Gérard Coquerel and A. David Rae
Additional contact information
Riccardo Montis: University of Southampton
Luca Fusaro: Namur Institute of Structured Matter (NISM), University of Namur
Andrea Falqui: King Abdullah University of Science and Technology (KAUST)
Michael B. Hursthouse: University of Southampton
Nikolay Tumanov: Namur Institute of Structured Matter (NISM), University of Namur
Simon J. Coles: University of Southampton
Terry L. Threlfall: University of Southampton
Peter N. Horton: University of Southampton
Rachid Sougrat: KAUST Core Labs, King Abdullah University of Science and Technology
Anaïs Lafontaine: Laboratoire SMS—EA3233, Université de Rouen Normandie
Gérard Coquerel: Laboratoire SMS—EA3233, Université de Rouen Normandie
A. David Rae: Research School of Chemistry, College of Physical Sciences, Australian National University

Nature, 2021, vol. 590, issue 7845, 275-278

Abstract: Abstract Molecular self-assembly is the spontaneous association of simple molecules into larger and ordered structures1. It is the basis of several natural processes, such as the formation of colloids, crystals, proteins, viruses and double-helical DNA2. Molecular self-assembly has inspired strategies for the rational design of materials with specific chemical and physical properties3, and is one of the most important concepts in supramolecular chemistry. Although molecular self-assembly has been extensively investigated, understanding the rules governing this phenomenon remains challenging. Here we report on a simple hydrochloride salt of fampridine that crystallizes as four different structures, two of which adopt unusual self-assemblies consisting of polyhedral clusters of chloride and pyridinium ions. These two structures represent Frank–Kasper (FK) phases of a small and rigid organic molecule. Although discovered in metal alloys4,5 more than 60 years ago, FK phases have recently been observed in several classes of supramolecular soft matter6–11 and in gold nanocrystal superlattices12 and remain the object of recent discoveries13. In these systems, atoms or spherical assemblies of molecules are packed to form polyhedra with coordination numbers 12, 14, 15 or 16. The two FK structures reported here crystallize from a dense liquid phase and show a complexity that is generally not observed in small rigid organic molecules. Investigation of the precursor dense liquid phase by cryogenic electron microscopy reveals the presence of spherical aggregates with sizes ranging between 1.5 and 4.6 nanometres. These structures, together with the experimental procedure used for their preparation, invite interesting speculation about their formation and open different perspectives for the design of organic crystalline materials.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03194-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:590:y:2021:i:7845:d:10.1038_s41586-021-03194-y

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03194-y

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:590:y:2021:i:7845:d:10.1038_s41586-021-03194-y