EconPapers    
Economics at your fingertips  
 

Quantum circuits with many photons on a programmable nanophotonic chip

J. M. Arrazola (), V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon (), Z. Zabaneh and Y. Zhang
Additional contact information
J. M. Arrazola: Xanadu
V. Bergholm: Xanadu
K. Brádler: Xanadu
T. R. Bromley: Xanadu
M. J. Collins: Xanadu
I. Dhand: Xanadu
A. Fumagalli: Xanadu
T. Gerrits: National Institute of Standards and Technology
A. Goussev: Xanadu
L. G. Helt: Xanadu
J. Hundal: Xanadu
T. Isacsson: Xanadu
R. B. Israel: Xanadu
J. Izaac: Xanadu
S. Jahangiri: Xanadu
R. Janik: Xanadu
N. Killoran: Xanadu
S. P. Kumar: Xanadu
J. Lavoie: Xanadu
A. E. Lita: National Institute of Standards and Technology
D. H. Mahler: Xanadu
M. Menotti: Xanadu
B. Morrison: Xanadu
S. W. Nam: National Institute of Standards and Technology
L. Neuhaus: Xanadu
H. Y. Qi: Xanadu
N. Quesada: Xanadu
A. Repingon: Xanadu
K. K. Sabapathy: Xanadu
M. Schuld: Xanadu
D. Su: Xanadu
J. Swinarton: Xanadu
A. Száva: Xanadu
K. Tan: Xanadu
P. Tan: Xanadu
V. D. Vaidya: Xanadu
Z. Vernon: Xanadu
Z. Zabaneh: Xanadu
Y. Zhang: Xanadu

Nature, 2021, vol. 591, issue 7848, 54-60

Abstract: Abstract Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for executing quantum algorithms1,2. Present-day photonic quantum computers3–7 have been limited either to non-deterministic operation, low photon numbers and rates, or fixed random gate sequences. Here we introduce a full-stack hardware−software system for executing many-photon quantum circuit operations using integrated nanophotonics: a programmable chip, operating at room temperature and interfaced with a fully automated control system. The system enables remote users to execute quantum algorithms that require up to eight modes of strongly squeezed vacuum initialized as two-mode squeezed states in single temporal modes, a fully general and programmable four-mode interferometer, and photon number-resolving readout on all outputs. Detection of multi-photon events with photon numbers and rates exceeding any previous programmable quantum optical demonstration is made possible by strong squeezing and high sampling rates. We verify the non-classicality of the device output, and use the platform to carry out proof-of-principle demonstrations of three quantum algorithms: Gaussian boson sampling, molecular vibronic spectra and graph similarity8. These demonstrations validate the platform as a launchpad for scaling photonic technologies for quantum information processing.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03202-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:591:y:2021:i:7848:d:10.1038_s41586-021-03202-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03202-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:591:y:2021:i:7848:d:10.1038_s41586-021-03202-1