Laser cooling of antihydrogen atoms
C. J. Baker,
W. Bertsche,
A. Capra,
C. Carruth,
C. L. Cesar,
M. Charlton,
A. Christensen,
R. Collister,
A. Cridland Mathad,
S. Eriksson,
A. Evans,
N. Evetts,
J. Fajans,
T. Friesen,
M. C. Fujiwara (),
D. R. Gill,
P. Grandemange,
P. Granum,
J. S. Hangst (),
W. N. Hardy,
M. E. Hayden,
D. Hodgkinson,
E. Hunter,
C. A. Isaac,
M. A. Johnson,
J. M. Jones,
S. A. Jones,
S. Jonsell,
A. Khramov,
P. Knapp,
L. Kurchaninov,
N. Madsen,
D. Maxwell,
J. T. K. McKenna,
S. Menary,
J. M. Michan,
T. Momose (),
P. S. Mullan,
J. J. Munich,
K. Olchanski,
A. Olin,
J. Peszka,
A. Powell,
P. Pusa,
C. Ø. Rasmussen,
F. Robicheaux,
R. L. Sacramento,
M. Sameed,
E. Sarid,
D. M. Silveira,
D. M. Starko,
C. So,
G. Stutter,
T. D. Tharp,
A. Thibeault,
R. I. Thompson,
D. P. Werf and
J. S. Wurtele
Additional contact information
C. J. Baker: Swansea University
W. Bertsche: University of Manchester
A. Capra: TRIUMF
C. Carruth: University of California at Berkeley
C. L. Cesar: Universidade Federal do Rio de Janeiro
M. Charlton: Swansea University
A. Christensen: University of California at Berkeley
R. Collister: TRIUMF
A. Cridland Mathad: Swansea University
S. Eriksson: Swansea University
A. Evans: University of Calgary
N. Evetts: University of British Columbia
J. Fajans: University of California at Berkeley
T. Friesen: University of Calgary
M. C. Fujiwara: TRIUMF
D. R. Gill: TRIUMF
P. Grandemange: TRIUMF
P. Granum: Aarhus University
J. S. Hangst: Aarhus University
W. N. Hardy: University of British Columbia
M. E. Hayden: Simon Fraser University
D. Hodgkinson: University of Manchester
E. Hunter: University of California at Berkeley
C. A. Isaac: Swansea University
M. A. Johnson: University of Manchester
J. M. Jones: Swansea University
S. A. Jones: Aarhus University
S. Jonsell: Stockholm University
A. Khramov: TRIUMF
P. Knapp: Swansea University
L. Kurchaninov: TRIUMF
N. Madsen: Swansea University
D. Maxwell: Swansea University
J. T. K. McKenna: TRIUMF
S. Menary: York University
J. M. Michan: TRIUMF
T. Momose: TRIUMF
P. S. Mullan: Swansea University
J. J. Munich: Simon Fraser University
K. Olchanski: TRIUMF
A. Olin: TRIUMF
J. Peszka: Swansea University
A. Powell: Swansea University
P. Pusa: University of Liverpool
C. Ø. Rasmussen: Experimental Physics Department, CERN
F. Robicheaux: Purdue University
R. L. Sacramento: Universidade Federal do Rio de Janeiro
M. Sameed: University of Manchester
E. Sarid: Soreq NRC
D. M. Silveira: TRIUMF
D. M. Starko: York University
C. So: TRIUMF
G. Stutter: Aarhus University
T. D. Tharp: Marquette University
A. Thibeault: TRIUMF
R. I. Thompson: TRIUMF
D. P. Werf: Swansea University
J. S. Wurtele: University of California at Berkeley
Nature, 2021, vol. 592, issue 7852, 35-42
Abstract:
Abstract The photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6–8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen9, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S–2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation10,11, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude—with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S–2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic11–13 and gravitational14 studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-021-03289-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:592:y:2021:i:7852:d:10.1038_s41586-021-03289-6
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-03289-6
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().