Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene
Jeong Min Park,
Yuan Cao (),
Kenji Watanabe,
Takashi Taniguchi and
Pablo Jarillo-Herrero ()
Additional contact information
Jeong Min Park: Massachusetts Institute of Technology
Yuan Cao: Massachusetts Institute of Technology
Kenji Watanabe: National Institute for Materials Science
Takashi Taniguchi: National Institute for Materials Science
Pablo Jarillo-Herrero: Massachusetts Institute of Technology
Nature, 2021, vol. 592, issue 7852, 43-48
Abstract:
Abstract Interaction-driven spontaneous symmetry breaking lies at the heart of many quantum phases of matter. In moiré systems, broken spin/valley ‘flavour’ symmetry in flat bands underlies the parent state from which correlated and topological ground states ultimately emerge1–10. However, the microscopic mechanism of such flavour symmetry breaking and its connection to the low-temperature phases are not yet understood. Here we investigate the broken-symmetry many-body ground state of magic-angle twisted bilayer graphene (MATBG) and its nontrivial topology using simultaneous thermodynamic and transport measurements. We directly observe flavour symmetry breaking as pinning of the chemical potential at all integer fillings of the moiré superlattice, demonstrating the importance of flavour Hund’s coupling in the many-body ground state. The topological nature of the underlying flat bands is manifested upon breaking time-reversal symmetry, where we measure energy gaps corresponding to Chern insulator states with Chern numbers 3, 2, 1 at filling factors 1, 2, 3, respectively, consistent with flavour symmetry breaking in the Hofstadter butterfly spectrum of MATBG. Moreover, concurrent measurements of resistivity and chemical potential provide the temperature-dependent charge diffusivity of MATBG in the strange-metal regime11—a quantity previously explored only in ultracold atoms12. Our results bring us one step closer to a unified framework for understanding interactions in the topological bands of MATBG, with and without a magnetic field.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-03366-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:592:y:2021:i:7852:d:10.1038_s41586-021-03366-w
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-03366-w
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().