EconPapers    
Economics at your fingertips  
 

Primate cell fusion disentangles gene regulatory divergence in neurodevelopment

Rachel M. Agoglia, Danqiong Sun, Fikri Birey, Se-Jin Yoon, Yuki Miura, Karen Sabatini, Sergiu P. Pașca () and Hunter B. Fraser ()
Additional contact information
Rachel M. Agoglia: Stanford University School of Medicine
Danqiong Sun: Stanford University
Fikri Birey: Stanford University School of Medicine
Se-Jin Yoon: Stanford University School of Medicine
Yuki Miura: Stanford University School of Medicine
Karen Sabatini: Stanford University School of Medicine
Sergiu P. Pașca: Stanford University School of Medicine
Hunter B. Fraser: Stanford University

Nature, 2021, vol. 592, issue 7854, 421-427

Abstract: Abstract Among primates, humans display a unique trajectory of development that is responsible for the many traits specific to our species. However, the inaccessibility of primary human and chimpanzee tissues has limited our ability to study human evolution. Comparative in vitro approaches using primate-derived induced pluripotent stem cells have begun to reveal species differences on the cellular and molecular levels1,2. In particular, brain organoids have emerged as a promising platform to study primate neural development in vitro3–5, although cross-species comparisons of organoids are complicated by differences in developmental timing and variability of differentiation6,7. Here we develop a new platform to address these limitations by fusing human and chimpanzee induced pluripotent stem cells to generate a panel of tetraploid hybrid stem cells. We applied this approach to study species divergence in cerebral cortical development by differentiating these cells into neural organoids. We found that hybrid organoids provide a controlled system for disentangling cis- and trans-acting gene-expression divergence across cell types and developmental stages, revealing a signature of selection on astrocyte-related genes. In addition, we identified an upregulation of the human somatostatin receptor 2 gene (SSTR2), which regulates neuronal calcium signalling and is associated with neuropsychiatric disorders8,9. We reveal a human-specific response to modulation of SSTR2 function in cortical neurons, underscoring the potential of this platform for elucidating the molecular basis of human evolution.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03343-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:592:y:2021:i:7854:d:10.1038_s41586-021-03343-3

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03343-3

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:592:y:2021:i:7854:d:10.1038_s41586-021-03343-3