EconPapers    
Economics at your fingertips  
 

Ubiquitous atmospheric production of organic acids mediated by cloud droplets

B. Franco (), T. Blumenstock, C. Cho, L. Clarisse, C. Clerbaux, P.-F. Coheur, M. De Mazière, I. De Smedt, H.-P. Dorn, T. Emmerichs, H. Fuchs, G. Gkatzelis, D. W. T. Griffith, S. Gromov, J. W. Hannigan, F. Hase, T. Hohaus, N. Jones, A. Kerkweg, A. Kiendler-Scharr, E. Lutsch, E. Mahieu, A. Novelli, I. Ortega, C. Paton-Walsh, M. Pommier, A. Pozzer, D. Reimer, S. Rosanka, R. Sander, M. Schneider, K. Strong, R. Tillmann, M. Van Roozendael, L. Vereecken, C. Vigouroux, A. Wahner and D. Taraborrelli ()
Additional contact information
B. Franco: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
T. Blumenstock: Karlsruhe Institute of Technology
C. Cho: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
L. Clarisse: Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing
C. Clerbaux: Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing
P.-F. Coheur: Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing
M. De Mazière: Royal Belgian Institute for Space Aeronomy
I. De Smedt: Royal Belgian Institute for Space Aeronomy
H.-P. Dorn: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
T. Emmerichs: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
H. Fuchs: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
G. Gkatzelis: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
D. W. T. Griffith: University of Wollongong
S. Gromov: Max Planck Institute for Chemistry
J. W. Hannigan: National Center for Atmospheric Research
F. Hase: Karlsruhe Institute of Technology
T. Hohaus: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
N. Jones: University of Wollongong
A. Kerkweg: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
A. Kiendler-Scharr: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
E. Lutsch: University of Toronto
E. Mahieu: University of Liège
A. Novelli: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
I. Ortega: National Center for Atmospheric Research
C. Paton-Walsh: University of Wollongong
M. Pommier: LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS
A. Pozzer: Max Planck Institute for Chemistry
D. Reimer: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
S. Rosanka: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
R. Sander: Max Planck Institute for Chemistry
M. Schneider: Karlsruhe Institute of Technology
K. Strong: University of Toronto
R. Tillmann: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
M. Van Roozendael: Royal Belgian Institute for Space Aeronomy
L. Vereecken: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
C. Vigouroux: Royal Belgian Institute for Space Aeronomy
A. Wahner: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich
D. Taraborrelli: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich

Nature, 2021, vol. 593, issue 7858, 233-237

Abstract: Abstract Atmospheric acidity is increasingly determined by carbon dioxide and organic acids1–3. Among the latter, formic acid facilitates the nucleation of cloud droplets4 and contributes to the acidity of clouds and rainwater1,5. At present, chemistry–climate models greatly underestimate the atmospheric burden of formic acid, because key processes related to its sources and sinks remain poorly understood2,6–9. Here we present atmospheric chamber experiments that show that formaldehyde is efficiently converted to gaseous formic acid via a multiphase pathway that involves its hydrated form, methanediol. In warm cloud droplets, methanediol undergoes fast outgassing but slow dehydration. Using a chemistry–climate model, we estimate that the gas-phase oxidation of methanediol produces up to four times more formic acid than all other known chemical sources combined. Our findings reconcile model predictions and measurements of formic acid abundance. The additional formic acid burden increases atmospheric acidity by reducing the pH of clouds and rainwater by up to 0.3. The diol mechanism presented here probably applies to other aldehydes and may help to explain the high atmospheric levels of other organic acids that affect aerosol growth and cloud evolution.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03462-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:593:y:2021:i:7858:d:10.1038_s41586-021-03462-x

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03462-x

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:593:y:2021:i:7858:d:10.1038_s41586-021-03462-x