Discovery, characterization and engineering of ligases for amide synthesis
Michael Winn,
Michael Rowlinson,
Fanghua Wang,
Luis Bering,
Daniel Francis,
Colin Levy and
Jason Micklefield ()
Additional contact information
Michael Winn: The University of Manchester
Michael Rowlinson: The University of Manchester
Fanghua Wang: The University of Manchester
Luis Bering: The University of Manchester
Daniel Francis: The University of Manchester
Colin Levy: The University of Manchester
Jason Micklefield: The University of Manchester
Nature, 2021, vol. 593, issue 7859, 391-398
Abstract:
Abstract Coronatine and related bacterial phytotoxins are mimics of the hormone jasmonyl-l-isoleucine (JA-Ile), which mediates physiologically important plant signalling pathways1–4. Coronatine-like phytotoxins disrupt these essential pathways and have potential in the development of safer, more selective herbicides. Although the biosynthesis of coronatine has been investigated previously, the nature of the enzyme that catalyses the crucial coupling of coronafacic acid to amino acids remains unknown1,2. Here we characterize a family of enzymes, coronafacic acid ligases (CfaLs), and resolve their structures. We found that CfaL can also produce JA-Ile, despite low similarity with the Jar1 enzyme that is responsible for ligation of JA and l-Ile in plants5. This suggests that Jar1 and CfaL evolved independently to catalyse similar reactions—Jar1 producing a compound essential for plant development4,5, and the bacterial ligases producing analogues toxic to plants. We further demonstrate how CfaL enzymes can be used to synthesize a diverse array of amides, obviating the need for protecting groups. Highly selective kinetic resolutions of racemic donor or acceptor substrates were achieved, affording homochiral products. We also used structure-guided mutagenesis to engineer improved CfaL variants. Together, these results show that CfaLs can deliver a wide range of amides for agrochemical, pharmaceutical and other applications.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-03447-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:593:y:2021:i:7859:d:10.1038_s41586-021-03447-w
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-03447-w
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().