EconPapers    
Economics at your fingertips  
 

Quantum-enhanced nonlinear microscopy

Catxere A. Casacio, Lars S. Madsen, Alex Terrasson, Muhammad Waleed, Kai Barnscheidt, Boris Hage, Michael A. Taylor and Warwick P. Bowen ()
Additional contact information
Catxere A. Casacio: University of Queensland, St Lucia
Lars S. Madsen: University of Queensland, St Lucia
Alex Terrasson: University of Queensland, St Lucia
Muhammad Waleed: University of Queensland, St Lucia
Kai Barnscheidt: Universität Rostock
Boris Hage: Universität Rostock
Michael A. Taylor: The University of Queensland, St Lucia
Warwick P. Bowen: University of Queensland, St Lucia

Nature, 2021, vol. 594, issue 7862, 201-206

Abstract: Abstract The performance of light microscopes is limited by the stochastic nature of light, which exists in discrete packets of energy known as photons. Randomness in the times that photons are detected introduces shot noise, which fundamentally constrains sensitivity, resolution and speed1. Although the long-established solution to this problem is to increase the intensity of the illumination light, this is not always possible when investigating living systems, because bright lasers can severely disturb biological processes2–4. Theory predicts that biological imaging may be improved without increasing light intensity by using quantum photon correlations1,5. Here we experimentally show that quantum correlations allow a signal-to-noise ratio beyond the photodamage limit of conventional microscopy. Our microscope is a coherent Raman microscope that offers subwavelength resolution and incorporates bright quantum correlated illumination. The correlations allow imaging of molecular bonds within a cell with a 35 per cent improved signal-to-noise ratio compared with conventional microscopy, corresponding to a 14 per cent improvement in concentration sensitivity. This enables the observation of biological structures that would not otherwise be resolved. Coherent Raman microscopes allow highly selective biomolecular fingerprinting in unlabelled specimens6,7, but photodamage is a major roadblock for many applications8,9. By showing that the photodamage limit can be overcome, our work will enable order-of-magnitude improvements in the signal-to-noise ratio and the imaging speed.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03528-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:594:y:2021:i:7862:d:10.1038_s41586-021-03528-w

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03528-w

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:594:y:2021:i:7862:d:10.1038_s41586-021-03528-w