EconPapers    
Economics at your fingertips  
 

Accurately computing the electronic properties of a quantum ring

C. Neill, T. McCourt, X. Mi, Z. Jiang, M. Y. Niu, W. Mruczkiewicz, I. Aleiner, F. Arute, K. Arya, J. Atalaya, R. Babbush, J. C. Bardin, R. Barends, A. Bengtsson, A. Bourassa, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, J. Campero, Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. R. Derk, A. Dunsworth, D. Eppens, C. Erickson, E. Farhi, A. G. Fowler, B. Foxen, C. Gidney, M. Giustina, J. A. Gross, M. P. Harrigan, S. D. Harrington, J. Hilton, A. Ho, S. Hong, T. Huang, W. J. Huggins, S. V. Isakov, M. Jacob-Mitos, E. Jeffrey, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, E. Lucero, O. Martin, J. R. McClean, M. McEwen, A. Megrant, K. C. Miao, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, M. Newman, T. E. O’Brien, A. Opremcak, E. Ostby, B. Pató, A. Petukhov, C. Quintana, N. Redd, N. C. Rubin, D. Sank, K. J. Satzinger, V. Shvarts, D. Strain, M. Szalay, M. D. Trevithick, B. Villalonga, T. C. White, Z. Yao, P. Yeh, A. Zalcman, H. Neven, S. Boixo, L. B. Ioffe, P. Roushan (), Y. Chen () and V. Smelyanskiy ()
Additional contact information
C. Neill: Google Quantum AI
T. McCourt: Google Quantum AI
X. Mi: Google Quantum AI
Z. Jiang: Google Quantum AI
M. Y. Niu: Google Quantum AI
W. Mruczkiewicz: Google Quantum AI
I. Aleiner: Google Quantum AI
F. Arute: Google Quantum AI
K. Arya: Google Quantum AI
J. Atalaya: Google Quantum AI
R. Babbush: Google Quantum AI
J. C. Bardin: Google Quantum AI
R. Barends: Google Quantum AI
A. Bengtsson: Google Quantum AI
A. Bourassa: Google Quantum AI
M. Broughton: Google Quantum AI
B. B. Buckley: Google Quantum AI
D. A. Buell: Google Quantum AI
B. Burkett: Google Quantum AI
N. Bushnell: Google Quantum AI
J. Campero: Google Quantum AI
Z. Chen: Google Quantum AI
B. Chiaro: Google Quantum AI
R. Collins: Google Quantum AI
W. Courtney: Google Quantum AI
S. Demura: Google Quantum AI
A. R. Derk: Google Quantum AI
A. Dunsworth: Google Quantum AI
D. Eppens: Google Quantum AI
C. Erickson: Google Quantum AI
E. Farhi: Google Quantum AI
A. G. Fowler: Google Quantum AI
B. Foxen: Google Quantum AI
C. Gidney: Google Quantum AI
M. Giustina: Google Quantum AI
J. A. Gross: Google Quantum AI
M. P. Harrigan: Google Quantum AI
S. D. Harrington: Google Quantum AI
J. Hilton: Google Quantum AI
A. Ho: Google Quantum AI
S. Hong: Google Quantum AI
T. Huang: Google Quantum AI
W. J. Huggins: Google Quantum AI
S. V. Isakov: Google Quantum AI
M. Jacob-Mitos: Google Quantum AI
E. Jeffrey: Google Quantum AI
C. Jones: Google Quantum AI
D. Kafri: Google Quantum AI
K. Kechedzhi: Google Quantum AI
J. Kelly: Google Quantum AI
S. Kim: Google Quantum AI
P. V. Klimov: Google Quantum AI
A. N. Korotkov: Google Quantum AI
F. Kostritsa: Google Quantum AI
D. Landhuis: Google Quantum AI
P. Laptev: Google Quantum AI
E. Lucero: Google Quantum AI
O. Martin: Google Quantum AI
J. R. McClean: Google Quantum AI
M. McEwen: Google Quantum AI
A. Megrant: Google Quantum AI
K. C. Miao: Google Quantum AI
M. Mohseni: Google Quantum AI
J. Mutus: Google Quantum AI
O. Naaman: Google Quantum AI
M. Neeley: Google Quantum AI
M. Newman: Google Quantum AI
T. E. O’Brien: Google Quantum AI
A. Opremcak: Google Quantum AI
E. Ostby: Google Quantum AI
B. Pató: Google Quantum AI
A. Petukhov: Google Quantum AI
C. Quintana: Google Quantum AI
N. Redd: Google Quantum AI
N. C. Rubin: Google Quantum AI
D. Sank: Google Quantum AI
K. J. Satzinger: Google Quantum AI
V. Shvarts: Google Quantum AI
D. Strain: Google Quantum AI
M. Szalay: Google Quantum AI
M. D. Trevithick: Google Quantum AI
B. Villalonga: Google Quantum AI
T. C. White: Google Quantum AI
Z. Yao: Google Quantum AI
P. Yeh: Google Quantum AI
A. Zalcman: Google Quantum AI
H. Neven: Google Quantum AI
S. Boixo: Google Quantum AI
L. B. Ioffe: Google Quantum AI
P. Roushan: Google Quantum AI
Y. Chen: Google Quantum AI
V. Smelyanskiy: Google Quantum AI

Nature, 2021, vol. 594, issue 7864, 508-512

Abstract: Abstract A promising approach to study condensed-matter systems is to simulate them on an engineered quantum platform1–4. However, the accuracy needed to outperform classical methods has not been achieved so far. Here, using 18 superconducting qubits, we provide an experimental blueprint for an accurate condensed-matter simulator and demonstrate how to investigate fundamental electronic properties. We benchmark the underlying method by reconstructing the single-particle band structure of a one-dimensional wire. We demonstrate nearly complete mitigation of decoherence and readout errors, and measure the energy eigenvalues of this wire with an error of approximately 0.01 rad, whereas typical energy scales are of the order of 1 rad. Insight into the fidelity of this algorithm is gained by highlighting the robust properties of a Fourier transform, including the ability to resolve eigenenergies with a statistical uncertainty of 10−4 rad. We also synthesize magnetic flux and disordered local potentials, which are two key tenets of a condensed-matter system. When sweeping the magnetic flux we observe avoided level crossings in the spectrum, providing a detailed fingerprint of the spatial distribution of local disorder. By combining these methods we reconstruct electronic properties of the eigenstates, observing persistent currents and a strong suppression of conductance with added disorder. Our work describes an accurate method for quantum simulation5,6 and paves the way to study new quantum materials with superconducting qubits.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03576-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:594:y:2021:i:7864:d:10.1038_s41586-021-03576-2

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03576-2

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:594:y:2021:i:7864:d:10.1038_s41586-021-03576-2