EconPapers    
Economics at your fingertips  
 

Ridgecrest aftershocks at Coso suppressed by thermal destressing

Kyungjae Im (), Jean-Philippe Avouac, Elías R. Heimisson and Derek Elsworth
Additional contact information
Kyungjae Im: California Institute of Technology
Jean-Philippe Avouac: California Institute of Technology
Elías R. Heimisson: California Institute of Technology
Derek Elsworth: EMS Energy Institute, Pennsylvania State University

Nature, 2021, vol. 595, issue 7865, 70-74

Abstract: Abstract Geothermal and volcanic areas are prone to earthquake triggering1,2. The Coso geothermal field in California lies just north of the surface ruptures driven by the 2019 Ridgecrest earthquake (moment magnitude Mw = 7.1), in an area where changes in coseismic stress should have triggered aftershocks3,4. However, no aftershocks were observed there4. Here we show that 30 years of geothermal heat production at Coso depleted shear stresses within the geothermal reservoir. Thermal contraction of the reservoir initially induced substantial seismicity, as observed in the Coso geothermal reservoir, but subsequently depleted the stress available to drive the aftershocks during the Ridgecrest sequence. This destressing changed the faulting style of the reservoir and impeded aftershock triggering. Although unlikely to have been the case for the Ridgecrest earthquake, such a destressed zone could, in principle, impede the propagation of a large earthquake.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03601-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:595:y:2021:i:7865:d:10.1038_s41586-021-03601-4

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03601-4

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:595:y:2021:i:7865:d:10.1038_s41586-021-03601-4