Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms
Pascal Scholl (),
Michael Schuler,
Hannah J. Williams,
Alexander A. Eberharter,
Daniel Barredo,
Kai-Niklas Schymik,
Vincent Lienhard,
Louis-Paul Henry,
Thomas C. Lang,
Thierry Lahaye,
Andreas M. Läuchli and
Antoine Browaeys
Additional contact information
Pascal Scholl: Laboratoire Charles Fabry, Institut d’Optique Graduate School, Université Paris-Saclay, CNRS
Michael Schuler: Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien
Hannah J. Williams: Laboratoire Charles Fabry, Institut d’Optique Graduate School, Université Paris-Saclay, CNRS
Alexander A. Eberharter: Universität Innsbruck
Daniel Barredo: Laboratoire Charles Fabry, Institut d’Optique Graduate School, Université Paris-Saclay, CNRS
Kai-Niklas Schymik: Laboratoire Charles Fabry, Institut d’Optique Graduate School, Université Paris-Saclay, CNRS
Vincent Lienhard: Laboratoire Charles Fabry, Institut d’Optique Graduate School, Université Paris-Saclay, CNRS
Louis-Paul Henry: Universität Hamburg
Thomas C. Lang: Universität Innsbruck
Thierry Lahaye: Laboratoire Charles Fabry, Institut d’Optique Graduate School, Université Paris-Saclay, CNRS
Andreas M. Läuchli: Universität Innsbruck
Antoine Browaeys: Laboratoire Charles Fabry, Institut d’Optique Graduate School, Université Paris-Saclay, CNRS
Nature, 2021, vol. 595, issue 7866, 233-238
Abstract:
Abstract Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems in regimes where other approaches, including numerical ones, fail1. Many platforms are being developed towards this goal, in particular based on trapped ions2–4, superconducting circuits5–7, neutral atoms8–11 or molecules12,13. All of these platforms face two key challenges: scaling up the ensemble size while retaining high-quality control over the parameters, and validating the outputs for these large systems. Here we use programmable arrays of individual atoms trapped in optical tweezers, with interactions controlled by laser excitation to Rydberg states11, to implement an iconic many-body problem—the antiferromagnetic two-dimensional transverse-field Ising model. We push this platform to a regime with up to 196 atoms manipulated with high fidelity and probe the antiferromagnetic order by dynamically tuning the parameters of the Hamiltonian. We illustrate the versatility of our platform by exploring various system sizes on two qualitatively different geometries—square and triangular arrays. We obtain good agreement with numerical calculations up to a computationally feasible size (approximately 100 particles). This work demonstrates that our platform can be readily used to address open questions in many-body physics.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-03585-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:595:y:2021:i:7866:d:10.1038_s41586-021-03585-1
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-03585-1
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().