EconPapers    
Economics at your fingertips  
 

The 13CO-rich atmosphere of a young accreting super-Jupiter

Yapeng Zhang, Ignas A. G. Snellen (), Alexander J. Bohn, Paul Mollière, Christian Ginski, H. Jens Hoeijmakers, Matthew A. Kenworthy, Eric E. Mamajek, Tiffany Meshkat, Maddalena Reggiani and Frans Snik
Additional contact information
Yapeng Zhang: Leiden University
Ignas A. G. Snellen: Leiden University
Alexander J. Bohn: Leiden University
Paul Mollière: Max-Planck-Institut für Astronomie
Christian Ginski: University of Amsterdam
H. Jens Hoeijmakers: Université de Genève
Matthew A. Kenworthy: Leiden University
Eric E. Mamajek: California Institute of Technology
Tiffany Meshkat: IPAC, California Institute of Technology
Maddalena Reggiani: KU Leuven
Frans Snik: Leiden University

Nature, 2021, vol. 595, issue 7867, 370-372

Abstract: Abstract Isotope abundance ratios have an important role in astronomy and planetary sciences, providing insights into the origin and evolution of the Solar System, interstellar chemistry and stellar nucleosynthesis1,2. In contrast to deuterium/hydrogen ratios, carbon isotope ratios are found to be roughly constant (around 89) in the Solar System1,3, but do vary on galactic scales with a 12C/13C isotopologue ratio of around 68 in the current local interstellar medium4–6. In molecular clouds and protoplanetary disks, 12CO/13CO ratios can be altered by ice and gas partitioning7, low-temperature isotopic ion-exchange reactions8 and isotope-selective photodissociation9. Here we report observations of 13CO in the atmosphere of the young, accreting super-Jupiter TYC 8998-760-1 b, at a statistical significance of more than six sigma. Marginalizing over the planet’s atmospheric temperature structure, chemical composition and spectral calibration uncertainties suggests a 12CO/13CO ratio of $${31}_{-10}^{+17}$$ 31 − 10 + 17 (90% confidence), a substantial enrichment in 13C with respect to the terrestrial standard and the local interstellar value. As the current location of TYC 8998-760-1 b at greater than or equal to 160 astronomical units is far beyond the CO snowline, we postulate that it accreted a substantial fraction of its carbon from ices enriched in 13C through fractionation.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03616-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:595:y:2021:i:7867:d:10.1038_s41586-021-03616-x

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03616-x

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:595:y:2021:i:7867:d:10.1038_s41586-021-03616-x