Pauli-limit violation and re-entrant superconductivity in moiré graphene
Yuan Cao (),
Jeong Min Park (),
Kenji Watanabe,
Takashi Taniguchi and
Pablo Jarillo-Herrero ()
Additional contact information
Yuan Cao: Massachusetts Institute of Technology
Jeong Min Park: Massachusetts Institute of Technology
Kenji Watanabe: National Institute for Materials Science
Takashi Taniguchi: National Institute for Materials Science
Pablo Jarillo-Herrero: Massachusetts Institute of Technology
Nature, 2021, vol. 595, issue 7868, 526-531
Abstract:
Abstract Moiré quantum matter has emerged as a materials platform in which correlated and topological phases can be explored with unprecedented control. Among them, magic-angle systems constructed from two or three layers of graphene have shown robust superconducting phases with unconventional characteristics1–5. However, direct evidence of unconventional pairing remains to be experimentally demonstrated. Here we show that magic-angle twisted trilayer graphene exhibits superconductivity up to in-plane magnetic fields in excess of 10 T, which represents a large (2–3 times) violation of the Pauli limit for conventional spin-singlet superconductors6,7. This is an unexpected observation for a system that is not predicted to have strong spin–orbit coupling. The Pauli-limit violation is observed over the entire superconducting phase, which indicates that it is not related to a possible pseudogap phase with large superconducting amplitude pairing. Notably, we observe re-entrant superconductivity at large magnetic fields, which is present over a narrower range of carrier densities and displacement fields. These findings suggest that the superconductivity in magic-angle twisted trilayer graphene is likely to be driven by a mechanism that results in non-spin-singlet Cooper pairs, and that the external magnetic field can cause transitions between phases with potentially different order parameters. Our results demonstrate the richness of moiré superconductivity and could lead to the design of next-generation exotic quantum matter.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-03685-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:595:y:2021:i:7868:d:10.1038_s41586-021-03685-y
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-03685-y
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().