Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity
Caiyou Chen,
Jonas C. Peters () and
Gregory C. Fu ()
Additional contact information
Caiyou Chen: California Institute of Technology
Jonas C. Peters: California Institute of Technology
Gregory C. Fu: California Institute of Technology
Nature, 2021, vol. 596, issue 7871, 250-256
Abstract:
Abstract The substitution of an alkyl electrophile by a nucleophile is a foundational reaction in organic chemistry that enables the efficient and convergent synthesis of organic molecules. Although there has been substantial recent progress in exploiting transition-metal catalysis to expand the scope of nucleophilic substitution reactions to include carbon nucleophiles1–4, there has been limited progress in corresponding reactions with nitrogen nucleophiles5–8. For many substitution reactions, the bond construction itself is not the only challenge, as there is a need to control stereochemistry at the same time. Here we describe a method for the enantioconvergent substitution of unactivated racemic alkyl electrophiles by a ubiquitous nitrogen-containing functional group, an amide. Our method uses a photoinduced catalyst system based on copper, an Earth-abundant metal. This process for asymmetric N-alkylation relies on three distinct ligands—a bisphosphine, a phenoxide and a chiral diamine. The ligands assemble in situ to form two distinct catalysts that act cooperatively: a copper/bisphosphine/phenoxide complex that serves as a photocatalyst, and a chiral copper/diamine complex that catalyses enantioselective C–N bond formation. Our study thus expands enantioselective N-substitution by alkyl electrophiles beyond activated electrophiles (those bearing at least one sp- or sp2-hybridized substituent on the carbon undergoing substitution)8–13 to include unactivated electrophiles.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-03730-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:596:y:2021:i:7871:d:10.1038_s41586-021-03730-w
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-03730-w
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().