EconPapers    
Economics at your fingertips  
 

Sympathetic cooling of a trapped proton mediated by an LC circuit

M. Bohman (), V. Grunhofer, C. Smorra, M. Wiesinger, C. Will, M. J. Borchert, J. A. Devlin, S. Erlewein, M. Fleck, S. Gavranovic, J. Harrington, B. Latacz, A. Mooser, D. Popper, E. Wursten, K. Blaum, Y. Matsuda, C. Ospelkaus, W. Quint, J. Walz and S. Ulmer
Additional contact information
M. Bohman: Max-Planck-Institut für Kernphysik
V. Grunhofer: Johannes Gutenberg-Universität
C. Smorra: RIKEN, Fundamental Symmetries Laboratory
M. Wiesinger: Max-Planck-Institut für Kernphysik
C. Will: Max-Planck-Institut für Kernphysik
M. J. Borchert: RIKEN, Fundamental Symmetries Laboratory
J. A. Devlin: RIKEN, Fundamental Symmetries Laboratory
S. Erlewein: RIKEN, Fundamental Symmetries Laboratory
M. Fleck: RIKEN, Fundamental Symmetries Laboratory
S. Gavranovic: Johannes Gutenberg-Universität
J. Harrington: Max-Planck-Institut für Kernphysik
B. Latacz: RIKEN, Fundamental Symmetries Laboratory
A. Mooser: Max-Planck-Institut für Kernphysik
D. Popper: Johannes Gutenberg-Universität
E. Wursten: RIKEN, Fundamental Symmetries Laboratory
K. Blaum: Max-Planck-Institut für Kernphysik
Y. Matsuda: University of Tokyo
C. Ospelkaus: Leibniz Universität Hannover
W. Quint: GSI Helmholtzzentrum für Schwerionenforschung GmbH
J. Walz: Johannes Gutenberg-Universität
S. Ulmer: RIKEN, Fundamental Symmetries Laboratory

Nature, 2021, vol. 596, issue 7873, 514-518

Abstract: Abstract Efficient cooling of trapped charged particles is essential to many fundamental physics experiments1,2, to high-precision metrology3,4 and to quantum technology5,6. Until now, sympathetic cooling has required close-range Coulomb interactions7,8, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps5,9,10, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enables energy exchange over a distance of 9 cm. We also demonstrate the cooling of a resonant mode of a macroscopic LC circuit with laser-cooled ions and sympathetic cooling of an individually trapped proton, reaching temperatures far below the environmental temperature. Notably, as this technique uses only image–current interactions, it can be easily applied to an experiment with antiprotons1, facilitating improved precision in matter–antimatter comparisons11 and dark matter searches12,13.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03784-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:596:y:2021:i:7873:d:10.1038_s41586-021-03784-w

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03784-w

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:596:y:2021:i:7873:d:10.1038_s41586-021-03784-w