Mercury stable isotopes constrain atmospheric sources to the ocean
Martin Jiskra (),
Lars-Eric Heimbürger-Boavida (),
Marie-Maëlle Desgranges,
Mariia V. Petrova,
Aurélie Dufour,
Beatriz Ferreira-Araujo,
Jérémy Masbou,
Jérôme Chmeleff,
Melilotus Thyssen,
David Point and
Jeroen E. Sonke ()
Additional contact information
Martin Jiskra: University of Basel
Lars-Eric Heimbürger-Boavida: CNRS/IRD/Université Paul Sabatier Toulouse III
Marie-Maëlle Desgranges: Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110
Mariia V. Petrova: Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110
Aurélie Dufour: Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110
Beatriz Ferreira-Araujo: CNRS/IRD/Université Paul Sabatier Toulouse III
Jérémy Masbou: CNRS/IRD/Université Paul Sabatier Toulouse III
Jérôme Chmeleff: CNRS/IRD/Université Paul Sabatier Toulouse III
Melilotus Thyssen: Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110
David Point: CNRS/IRD/Université Paul Sabatier Toulouse III
Jeroen E. Sonke: CNRS/IRD/Université Paul Sabatier Toulouse III
Nature, 2021, vol. 597, issue 7878, 678-682
Abstract:
Abstract Human exposure to toxic mercury (Hg) is dominated by the consumption of seafood1,2. Earth system models suggest that Hg in marine ecosystems is supplied by atmospheric wet and dry Hg(ii) deposition, with a three times smaller contribution from gaseous Hg(0) uptake3,4. Observations of marine Hg(ii) deposition and Hg(0) gas exchange are sparse, however5, leaving the suggested importance of Hg(ii) deposition6 ill-constrained. Here we present the first Hg stable isotope measurements of total Hg (tHg) in surface and deep Atlantic and Mediterranean seawater and use them to quantify atmospheric Hg deposition pathways. We observe overall similar tHg isotope compositions, with median Δ200Hg signatures of 0.02‰, lying in between atmospheric Hg(0) and Hg(ii) deposition end-members. We use a Δ200Hg isotope mass balance to estimate that seawater tHg can be explained by the mixing of 42% (median; interquartile range, 24–50%) atmospheric Hg(ii) gross deposition and 58% (50–76%) Hg(0) gross uptake. We measure and compile additional, global marine Hg isotope data including particulate Hg, sediments and biota and observe a latitudinal Δ200Hg gradient that indicates larger ocean Hg(0) uptake at high latitudes. Our findings suggest that global atmospheric Hg(0) uptake by the oceans is equal to Hg(ii) deposition, which has implications for our understanding of atmospheric Hg dispersal and marine ecosystem recovery.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-03859-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:597:y:2021:i:7878:d:10.1038_s41586-021-03859-8
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-03859-8
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().