EconPapers    
Economics at your fingertips  
 

Direct radiative effects of airborne microplastics

Laura E. Revell (), Peter Kuma, Eric C. Ru, Walter R. C. Somerville and Sally Gaw
Additional contact information
Laura E. Revell: University of Canterbury
Peter Kuma: University of Canterbury
Eric C. Ru: Victoria University of Wellington
Walter R. C. Somerville: Victoria University of Wellington
Sally Gaw: University of Canterbury

Nature, 2021, vol. 598, issue 7881, 462-467

Abstract: Abstract Microplastics are now recognized as widespread contaminants in the atmosphere, where, due to their small size and low density, they can be transported with winds around the Earth1–25. Atmospheric aerosols, such as mineral dust and other types of airborne particulate matter, influence Earth’s climate by absorbing and scattering radiation (direct radiative effects) and their impacts are commonly quantified with the effective radiative forcing (ERF) metric26. However, the radiative effects of airborne microplastics and associated implications for global climate are unknown. Here we present calculations of the optical properties and direct radiative effects of airborne microplastics (excluding aerosol–cloud interactions). The ERF of airborne microplastics is computed to be 0.044 ± 0.399 milliwatts per square metre in the present-day atmosphere assuming a uniform surface concentration of 1 microplastic particle per cubic metre and a vertical distribution up to 10 kilometres altitude. However, there are large uncertainties in the geographical and vertical distribution of microplastics. Assuming that they are confined to the boundary layer, shortwave effects dominate and the microplastic ERF is approximately −0.746 ± 0.553 milliwatts per square metre. Compared with the total ERF due to aerosol–radiation interactions27 (−0.71 to −0.14 watts per square metre), the microplastic ERF is small. However, plastic production has increased rapidly over the past 70 years28; without serious attempts to overhaul plastic production and waste-management practices, the abundance and ERF of airborne microplastics will continue to increase.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03864-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:598:y:2021:i:7881:d:10.1038_s41586-021-03864-x

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03864-x

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:598:y:2021:i:7881:d:10.1038_s41586-021-03864-x