EconPapers    
Economics at your fingertips  
 

Spatiotemporal origin of soil water taken up by vegetation

Gonzalo Miguez-Macho () and Ying Fan ()
Additional contact information
Gonzalo Miguez-Macho: Universidade de Santiago de Compostela
Ying Fan: Rutgers University

Nature, 2021, vol. 598, issue 7882, 624-628

Abstract: Abstract Vegetation modulates Earth’s water, energy and carbon cycles. How its functions might change in the future largely depends on how it copes with droughts1–4. There is evidence that, in places and times of drought, vegetation shifts water uptake to deeper soil5–7 and rock8,9 moisture as well as groundwater10–12. Here we differentiate and assess plant use of four types of water sources: precipitation in the current month (source 1), past precipitation stored in deeper unsaturated soils and/or rocks (source 2), past precipitation stored in groundwater (source 3, locally recharged) and groundwater from precipitation fallen on uplands via river–groundwater convergence toward lowlands (source 4, remotely recharged). We examine global and seasonal patterns and drivers in plant uptake of the four sources using inverse modelling and isotope-based estimates. We find that (1), globally and annually, 70% of plant transpiration relies on source 1, 18% relies on source 2, only 1% relies on source 3 and 10% relies on source 4; (2) regionally and seasonally, source 1 is only 19% in semi-arid, 32% in Mediterranean and 17% in winter-dry tropics in the driest months; and (3) at landscape scales, source 2, taken up by deep roots in the deep vadose zone, is critical in uplands in dry months, but source 4 is up to 47% in valleys where riparian forests and desert oases are found. Because the four sources originate from different places and times, move at different spatiotemporal scales and respond with different sensitivity to climate and anthropogenic forces, understanding the space and time origins of plant water sources can inform ecosystem management and Earth system models on the critical hydrological pathways linking precipitation to vegetation.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03958-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:598:y:2021:i:7882:d:10.1038_s41586-021-03958-6

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03958-6

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:598:y:2021:i:7882:d:10.1038_s41586-021-03958-6