EconPapers    
Economics at your fingertips  
 

Multicomponent alkene azidoarylation by anion-mediated dual catalysis

Ala Bunescu, Yusra Abdelhamid and Matthew J. Gaunt ()
Additional contact information
Ala Bunescu: University of Cambridge
Yusra Abdelhamid: University of Cambridge
Matthew J. Gaunt: University of Cambridge

Nature, 2021, vol. 598, issue 7882, 597-603

Abstract: Abstract Molecules that contain the β-arylethylamine motif have applications in the modulation of pain, treatment of neurological disorders and management of opioid addiction, among others, making it a privileged scaffold in drug discovery1,2. De novo methods for their assembly are reliant on transformations that convert a small class of feedstocks into the target compounds via time-consuming multistep syntheses3–5. Synthetic invention can drive the investigation of the chemical space around this scaffold to further expand its capabilities in biology6–9. Here we report the development of a dual catalysis platform that enables a multicomponent coupling of alkenes, aryl electrophiles and a simple nitrogen nucleophile, providing single-step access to synthetically versatile and functionally diverse β-arylethylamines. Driven by visible light, two discrete copper catalysts orchestrate aryl-radical formation and azido-group transfer, which underpin an alkene azidoarylation process. The process shows broad scope in alkene and aryl components and an azide anion performs a multifaceted role both as a nitrogen source and in mediating the redox-neutral dual catalysis via inner-sphere electron transfer10,11. The synthetic capabilities of this anion-mediated alkene functionalization process are likely to be of use in a variety of pharmaceutically relevant and wider synthetic applications.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03980-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:598:y:2021:i:7882:d:10.1038_s41586-021-03980-8

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03980-8

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:598:y:2021:i:7882:d:10.1038_s41586-021-03980-8