A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis
Shenbin Liu,
Zhifu Wang,
Yangshuai Su,
Lu Qi,
Wei Yang,
Mingzhou Fu,
Xianghong Jing,
Yanqing Wang and
Qiufu Ma ()
Additional contact information
Shenbin Liu: Harvard Medical School
Zhifu Wang: Harvard Medical School
Yangshuai Su: Harvard Medical School
Lu Qi: Harvard Medical School
Wei Yang: Harvard Medical School
Mingzhou Fu: Harvard Medical School
Xianghong Jing: China Academy of Chinese Medical Sciences
Yanqing Wang: Fudan University
Qiufu Ma: Harvard Medical School
Nature, 2021, vol. 598, issue 7882, 641-645
Abstract:
Abstract Somatosensory autonomic reflexes allow electroacupuncture stimulation (ES) to modulate body physiology at distant sites1–6 (for example, suppressing severe systemic inflammation6–9). Since the 1970s, an emerging organizational rule about these reflexes has been the presence of body-region specificity1–6. For example, ES at the hindlimb ST36 acupoint but not the abdominal ST25 acupoint can drive the vagal–adrenal anti-inflammatory axis in mice10,11. The neuroanatomical basis of this somatotopic organization is, however, unknown. Here we show that PROKR2Cre-marked sensory neurons, which innervate the deep hindlimb fascia (for example, the periosteum) but not abdominal fascia (for example, the peritoneum), are crucial for driving the vagal–adrenal axis. Low-intensity ES at the ST36 site in mice with ablated PROKR2Cre-marked sensory neurons failed to activate hindbrain vagal efferent neurons or to drive catecholamine release from adrenal glands. As a result, ES no longer suppressed systemic inflammation induced by bacterial endotoxins. By contrast, spinal sympathetic reflexes evoked by high-intensity ES at both ST25 and ST36 sites were unaffected. We also show that optogenetic stimulation of PROKR2Cre-marked nerve terminals through the ST36 site is sufficient to drive the vagal–adrenal axis but not sympathetic reflexes. Furthermore, the distribution patterns of PROKR2Cre nerve fibres can retrospectively predict body regions at which low-intensity ES will or will not effectively produce anti-inflammatory effects. Our studies provide a neuroanatomical basis for the selectivity and specificity of acupoints in driving specific autonomic pathways.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-04001-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:598:y:2021:i:7882:d:10.1038_s41586-021-04001-4
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-04001-4
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().