Thalamic circuits for independent control of prefrontal signal and noise
Arghya Mukherjee,
Norman H. Lam,
Ralf D. Wimmer and
Michael M. Halassa ()
Additional contact information
Arghya Mukherjee: Massachusetts Institute of Technology
Norman H. Lam: Massachusetts Institute of Technology
Ralf D. Wimmer: Massachusetts Institute of Technology
Michael M. Halassa: Massachusetts Institute of Technology
Nature, 2021, vol. 600, issue 7887, 100-104
Abstract:
Abstract Interactions between the mediodorsal thalamus and the prefrontal cortex are critical for cognition. Studies in humans indicate that these interactions may resolve uncertainty in decision-making1, but the precise mechanisms are unknown. Here we identify two distinct mediodorsal projections to the prefrontal cortex that have complementary mechanistic roles in decision-making under uncertainty. Specifically, we found that a dopamine receptor (D2)-expressing projection amplifies prefrontal signals when task inputs are sparse and a kainate receptor (GRIK4) expressing-projection suppresses prefrontal noise when task inputs are dense but conflicting. Collectively, our data suggest that there are distinct brain mechanisms for handling uncertainty due to low signals versus uncertainty due to high noise, and provide a mechanistic entry point for correcting decision-making abnormalities in disorders that have a prominent prefrontal component2–6.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-04056-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:600:y:2021:i:7887:d:10.1038_s41586-021-04056-3
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-04056-3
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().