EconPapers    
Economics at your fingertips  
 

A wide-orbit giant planet in the high-mass b Centauri binary system

Markus Janson (), Raffaele Gratton, Laetitia Rodet, Arthur Vigan, Mickaël Bonnefoy, Philippe Delorme, Eric E. Mamajek, Sabine Reffert, Lukas Stock, Gabriel-Dominique Marleau, Maud Langlois, Gaël Chauvin, Silvano Desidera, Simon Ringqvist, Lucio Mayer, Gayathri Viswanath, Vito Squicciarini, Michael R. Meyer, Matthias Samland, Simon Petrus, Ravit Helled, Matthew A. Kenworthy, Sascha P. Quanz, Beth Biller, Thomas Henning, Dino Mesa, Natalia Engler and Joseph C. Carson
Additional contact information
Markus Janson: Stockholm University
Raffaele Gratton: INAF Osservatorio Astronomico di Padova
Laetitia Rodet: Cornell University
Arthur Vigan: Aix-Marseille Université, CNRS, CNES, LAM (Laboratoire d’Astrophysique de Marseille)
Mickaël Bonnefoy: Université Grenoble Alpes, CNRS, IPAG
Philippe Delorme: Université Grenoble Alpes, CNRS, IPAG
Eric E. Mamajek: California Institute of Technology
Sabine Reffert: Landessternwarte, Zentrum für Astronomie der Universität Heidelberg
Lukas Stock: Landessternwarte, Zentrum für Astronomie der Universität Heidelberg
Gabriel-Dominique Marleau: Universität Tübingen
Maud Langlois: CRAL, UMR 5574, CNRS, Université Lyon 1
Gaël Chauvin: Université Grenoble Alpes, CNRS, IPAG
Silvano Desidera: INAF Osservatorio Astronomico di Padova
Simon Ringqvist: Stockholm University
Lucio Mayer: University of Zurich
Gayathri Viswanath: Stockholm University
Vito Squicciarini: INAF Osservatorio Astronomico di Padova
Michael R. Meyer: University of Michigan
Matthias Samland: Stockholm University
Simon Petrus: Université Grenoble Alpes, CNRS, IPAG
Ravit Helled: University of Zurich
Matthew A. Kenworthy: Leiden University
Sascha P. Quanz: ETH Zurich, Institute for Particle Physics and Astrophysics
Beth Biller: University of Edinburgh
Thomas Henning: Max-Planck-Institut für Astronomie
Dino Mesa: INAF Osservatorio Astronomico di Padova
Natalia Engler: ETH Zurich, Institute for Particle Physics and Astrophysics
Joseph C. Carson: College of Charleston, Department of Physics & Astronomy

Nature, 2021, vol. 600, issue 7888, 231-234

Abstract: Abstract Planet formation occurs around a wide range of stellar masses and stellar system architectures1. An improved understanding of the formation process can be achieved by studying it across the full parameter space, particularly towards the extremes. Earlier studies of planets in close-in orbits around high-mass stars have revealed an increase in giant planet frequency with increasing stellar mass2 until a turnover point at 1.9 solar masses (M⊙), above which the frequency rapidly decreases3. This could potentially imply that planet formation is impeded around more massive stars, and that giant planets around stars exceeding 3 M⊙ may be rare or non-existent. However, the methods used to detect planets in small orbits are insensitive to planets in wide orbits. Here we demonstrate the existence of a planet at 560 times the Sun–Earth distance from the 6- to 10-M⊙ binary b Centauri through direct imaging. The planet-to-star mass ratio of 0.10–0.17% is similar to the Jupiter–Sun ratio, but the separation of the detected planet is about 100 times wider than that of Jupiter. Our results show that planets can reside in much more massive stellar systems than what would be expected from extrapolation of previous results. The planet is unlikely to have formed in situ through the conventional core accretion mechanism4, but might have formed elsewhere and arrived to its present location through dynamical interactions, or might have formed via gravitational instability.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-021-04124-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:600:y:2021:i:7888:d:10.1038_s41586-021-04124-8

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-04124-8

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:600:y:2021:i:7888:d:10.1038_s41586-021-04124-8