EconPapers    
Economics at your fingertips  
 

Resonance from antiferromagnetic spin fluctuations for superconductivity in UTe2

Chunruo Duan, R. E. Baumbach, Andrey Podlesnyak, Yuhang Deng, Camilla Moir, Alexander J. Breindel, M. Brian Maple, E. M. Nica, Qimiao Si and Pengcheng Dai ()
Additional contact information
Chunruo Duan: Rice University
R. E. Baumbach: Florida State University
Andrey Podlesnyak: Oak Ridge National Laboratory
Yuhang Deng: University of California, San Diego
Camilla Moir: University of California, San Diego
Alexander J. Breindel: University of California, San Diego
M. Brian Maple: University of California, San Diego
E. M. Nica: Arizona State University
Qimiao Si: Rice University
Pengcheng Dai: Rice University

Nature, 2021, vol. 600, issue 7890, 636-640

Abstract: Abstract Superconductivity originates from the formation of bound (Cooper) pairs of electrons that can move through the lattice without resistance below the superconducting transition temperature Tc (ref. 1). Electron Cooper pairs in most superconductors form anti-parallel spin singlets with total spin S = 0 (ref. 2), although they can also form parallel spin-triplet Cooper pairs with S = 1 and an odd parity wavefunction3. Spin-triplet pairing is important because it can host topological states and Majorana fermions relevant for quantum computation4,5. Because spin-triplet pairing is usually mediated by ferromagnetic (FM) spin fluctuations3, uranium-based materials near an FM instability are considered to be ideal candidates for realizing spin-triplet superconductivity6. Indeed, UTe2, which has a Tc ≈ 1.6 K (refs. 7,8), has been identified as a candidate for a chiral spin-triplet topological superconductor near an FM instability7–14, although it also has antiferromagnetic (AF) spin fluctuations15,16. Here we use inelastic neutron scattering (INS) to show that superconductivity in UTe2 is coupled to a sharp magnetic excitation, termed resonance17–23, at the Brillouin zone boundary near AF order. Because the resonance has only been found in spin-singlet unconventional superconductors near an AF instability17–23, its observation in UTe2 suggests that AF spin fluctuations may also induce spin-triplet pairing24 or that electron pairing in UTe2 has a spin-singlet component.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-04151-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:600:y:2021:i:7890:d:10.1038_s41586-021-04151-5

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-04151-5

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:600:y:2021:i:7890:d:10.1038_s41586-021-04151-5