Iron pnictides and chalcogenides: a new paradigm for superconductivity
Rafael M. Fernandes (),
Amalia I. Coldea,
Hong Ding,
Ian R. Fisher,
P. J. Hirschfeld and
Gabriel Kotliar
Additional contact information
Rafael M. Fernandes: University of Minnesota
Amalia I. Coldea: University of Oxford
Hong Ding: Chinese Academy of Sciences
Ian R. Fisher: Stanford University
P. J. Hirschfeld: University of Florida
Gabriel Kotliar: Rutgers University
Nature, 2022, vol. 601, issue 7891, 35-44
Abstract:
Abstract Superconductivity is a remarkably widespread phenomenon that is observed in most metals cooled to very low temperatures. The ubiquity of such conventional superconductors, and the wide range of associated critical temperatures, is readily understood in terms of the well-known Bardeen–Cooper–Schrieffer theory. Occasionally, however, unconventional superconductors are found, such as the iron-based materials, which extend and defy this understanding in unexpected ways. In the case of the iron-based superconductors, this includes the different ways in which the presence of multiple atomic orbitals can manifest in unconventional superconductivity, giving rise to a rich landscape of gap structures that share the same dominant pairing mechanism. In addition, these materials have also led to insights into the unusual metallic state governed by the Hund’s interaction, the control and mechanisms of electronic nematicity, the impact of magnetic fluctuations and quantum criticality, and the importance of topology in correlated states. Over the fourteen years since their discovery, iron-based superconductors have proven to be a testing ground for the development of novel experimental tools and theoretical approaches, both of which have extensively influenced the wider field of quantum materials.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-04073-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:601:y:2022:i:7891:d:10.1038_s41586-021-04073-2
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-04073-2
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().