EconPapers    
Economics at your fingertips  
 

A WC/WO star exploding within an expanding carbon–oxygen–neon nebula

A. Gal-Yam (), R. Bruch, S. Schulze, Y. Yang, D. A. Perley, I. Irani, J. Sollerman, E. C. Kool, M. T. Soumagnac, O. Yaron, N. L. Strotjohann, E. Zimmerman, C. Barbarino, S. R. Kulkarni, M. M. Kasliwal, K. De, Y. Yao, C. Fremling, L. Yan, E. O. Ofek, C. Fransson, A. V. Filippenko, W. Zheng, T. G. Brink, C. M. Copperwheat, R. J. Foley, J. Brown, M. Siebert, G. Leloudas, A. L. Cabrera-Lavers, D. Garcia-Alvarez, A. Marante-Barreto, S. Frederick, T. Hung, J. C. Wheeler, J. Vinkó, B. P. Thomas, M. J. Graham, D. A. Duev, A. J. Drake, R. Dekany, E. C. Bellm, B. Rusholme, D. L. Shupe, I. Andreoni, Y. Sharma, R. Riddle, J. Roestel and N. Knezevic
Additional contact information
A. Gal-Yam: Weizmann Institute of Science
R. Bruch: Weizmann Institute of Science
S. Schulze: Weizmann Institute of Science
Y. Yang: Weizmann Institute of Science
D. A. Perley: Liverpool John Moores University
I. Irani: Weizmann Institute of Science
J. Sollerman: Stockholm University
E. C. Kool: Stockholm University
M. T. Soumagnac: Weizmann Institute of Science
O. Yaron: Weizmann Institute of Science
N. L. Strotjohann: Weizmann Institute of Science
E. Zimmerman: Weizmann Institute of Science
C. Barbarino: Stockholm University
S. R. Kulkarni: California Institute of Technology
M. M. Kasliwal: California Institute of Technology
K. De: California Institute of Technology
Y. Yao: California Institute of Technology
C. Fremling: California Institute of Technology
L. Yan: California Institute of Technology
E. O. Ofek: Weizmann Institute of Science
C. Fransson: Stockholm University
A. V. Filippenko: University of California, Berkeley
W. Zheng: University of California, Berkeley
T. G. Brink: University of California, Berkeley
C. M. Copperwheat: Liverpool John Moores University
R. J. Foley: University of California, Santa Cruz
J. Brown: University of California, Santa Cruz
M. Siebert: University of California, Santa Cruz
G. Leloudas: Technical University of Denmark
A. L. Cabrera-Lavers: Centro de Astrofísica de La Palma
D. Garcia-Alvarez: Centro de Astrofísica de La Palma
A. Marante-Barreto: Centro de Astrofísica de La Palma
S. Frederick: University of Maryland
T. Hung: University of California, Santa Cruz
J. C. Wheeler: University of Texas at Austin
J. Vinkó: University of Texas at Austin
B. P. Thomas: University of Texas at Austin
M. J. Graham: California Institute of Technology
D. A. Duev: California Institute of Technology
A. J. Drake: California Institute of Technology
R. Dekany: California Institute of Technology
E. C. Bellm: University of Washington
B. Rusholme: California Institute of Technology
D. L. Shupe: California Institute of Technology
I. Andreoni: California Institute of Technology
Y. Sharma: California Institute of Technology
R. Riddle: California Institute of Technology
J. Roestel: California Institute of Technology
N. Knezevic: University of Belgrade

Nature, 2022, vol. 601, issue 7892, 201-204

Abstract: Abstract The final fate of massive stars, and the nature of the compact remnants they leave behind (black holes and neutron stars), are open questions in astrophysics. Many massive stars are stripped of their outer hydrogen envelopes as they evolve. Such Wolf–Rayet stars1 emit strong and rapidly expanding winds with speeds greater than 1,000 kilometres per second. A fraction of this population is also helium-depleted, with spectra dominated by highly ionized emission lines of carbon and oxygen (types WC/WO). Evidence indicates that the most commonly observed supernova explosions that lack hydrogen and helium (types Ib/Ic) cannot result from massive WC/WO stars2,3, leading some to suggest that most such stars collapse directly into black holes without a visible supernova explosion4. Here we report observations of SN 2019hgp, beginning about a day after the explosion. Its short rise time and rapid decline place it among an emerging population of rapidly evolving transients5–8. Spectroscopy reveals a rich set of emission lines indicating that the explosion occurred within a nebula composed of carbon, oxygen and neon. Narrow absorption features show that this material is expanding at high velocities (greater than 1,500 kilometres per second), requiring a compact progenitor. Our observations are consistent with an explosion of a massive WC/WO star, and suggest that massive Wolf–Rayet stars may be the progenitors of some rapidly evolving transients.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-021-04155-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:601:y:2022:i:7892:d:10.1038_s41586-021-04155-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-04155-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:601:y:2022:i:7892:d:10.1038_s41586-021-04155-1