EconPapers    
Economics at your fingertips  
 

Search for magnetic monopoles produced via the Schwinger mechanism

B. Acharya, J. Alexandre, P. Benes, B. Bergmann, S. Bertolucci, A. Bevan, H. Branzas, P. Burian, M. Campbell, Y. M. Cho, M. Montigny, A. Roeck, J. R. Ellis, M. El Sawy, M. Fairbairn, D. Felea, M. Frank, O. Gould, J. Hays, A. M. Hirt, D. L.-J. Ho, P. Q. Hung, J. Janecek, M. Kalliokoski, A. Korzenev, D. H. Lacarrère, C. Leroy, G. Levi, A. Lionti, A. Maulik, A. Margiotta, N. Mauri, N. E. Mavromatos, P. Mermod, L. Millward, V. A. Mitsou, I. Ostrovskiy (), P.-P. Ouimet, J. Papavassiliou, B. Parker, L. Patrizii, G. E. Păvălaş, J. L. Pinfold, L. A. Popa, V. Popa, M. Pozzato, S. Pospisil, A. Rajantie, R. Ruiz Austri, Z. Sahnoun, M. Sakellariadou, A. Santra, S. Sarkar, G. Semenoff, A. Shaa, G. Sirri, K. Sliwa, R. Soluk, M. Spurio, M. Staelens, M. Suk, M. Tenti, V. Togo, J. A. Tuszyn’ski, A. Upreti, V. Vento and O. Vives
Additional contact information
B. Acharya: King’s College London
J. Alexandre: King’s College London
P. Benes: Czech Technical University in Prague
B. Bergmann: Czech Technical University in Prague
S. Bertolucci: INFN, Section of Bologna
A. Bevan: Queen Mary University of London
H. Branzas: Institute of Space Science
P. Burian: Czech Technical University in Prague
M. Campbell: CERN
Y. M. Cho: Sogang University
M. Montigny: University of Alberta
A. Roeck: CERN
J. R. Ellis: King’s College London
M. El Sawy: CERN
M. Fairbairn: King’s College London
D. Felea: Institute of Space Science
M. Frank: Concordia University
O. Gould: University of Nottingham
J. Hays: Queen Mary University of London
A. M. Hirt: Swiss Federal Institute of Technology
D. L.-J. Ho: Imperial College London
P. Q. Hung: University of Virginia
J. Janecek: Czech Technical University in Prague
M. Kalliokoski: University of Helsinki
A. Korzenev: Université de Genève
D. H. Lacarrère: CERN
C. Leroy: Université de Montréal
G. Levi: INFN, Section of Bologna
A. Lionti: Université de Genève
A. Maulik: INFN, Section of Bologna
A. Margiotta: University of Bologna
N. Mauri: INFN, Section of Bologna
N. E. Mavromatos: King’s College London
P. Mermod: Université de Genève
L. Millward: Queen Mary University of London
V. A. Mitsou: Universitat de València, CSIC
I. Ostrovskiy: University of Alabama
P.-P. Ouimet: University of Alberta
J. Papavassiliou: Universitat de València, CSIC
B. Parker: Institute for Research in Schools
L. Patrizii: INFN, Section of Bologna
G. E. Păvălaş: Institute of Space Science
J. L. Pinfold: University of Alberta
L. A. Popa: Institute of Space Science
V. Popa: Institute of Space Science
M. Pozzato: INFN, Section of Bologna
S. Pospisil: Czech Technical University in Prague
A. Rajantie: Imperial College London
R. Ruiz Austri: Universitat de València, CSIC
Z. Sahnoun: INFN, Section of Bologna
M. Sakellariadou: King’s College London
A. Santra: Universitat de València, CSIC
S. Sarkar: King’s College London
G. Semenoff: University of British Columbia
A. Shaa: University of Alberta
G. Sirri: INFN, Section of Bologna
K. Sliwa: Tufts University
R. Soluk: University of Alberta
M. Spurio: University of Bologna
M. Staelens: University of Alberta
M. Suk: Czech Technical University in Prague
M. Tenti: CNAF, INFN
V. Togo: INFN, Section of Bologna
J. A. Tuszyn’ski: University of Alberta
A. Upreti: University of Alabama
V. Vento: Universitat de València, CSIC
O. Vives: Universitat de València, CSIC

Nature, 2022, vol. 602, issue 7895, 63-67

Abstract: Abstract Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism1. By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist2. Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model3–7 but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size8,9 and strong coupling to photons2,10. Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb–Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe11. It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 × 109, of Pb–Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-021-04298-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:602:y:2022:i:7895:d:10.1038_s41586-021-04298-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-04298-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:602:y:2022:i:7895:d:10.1038_s41586-021-04298-1