EconPapers    
Economics at your fingertips  
 

Crystallographic snapshots of a B12-dependent radical SAM methyltransferase

Cameron D. Fyfe, Noelia Bernardo-García, Laura Fradale, Stéphane Grimaldi, Alain Guillot, Clémence Brewee, Leonard M. G. Chavas, Pierre Legrand, Alhosna Benjdia () and Olivier Berteau ()
Additional contact information
Cameron D. Fyfe: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio
Noelia Bernardo-García: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio
Laura Fradale: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio
Stéphane Grimaldi: Aix Marseille Univ, CNRS, BIP UMR7281
Alain Guillot: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio
Clémence Brewee: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio
Leonard M. G. Chavas: Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers
Pierre Legrand: Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers
Alhosna Benjdia: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio
Olivier Berteau: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio

Nature, 2022, vol. 602, issue 7896, 336-342

Abstract: Abstract By catalysing the microbial formation of methane, methyl-coenzyme M reductase has a central role in the global levels of this greenhouse gas1,2. The activity of methyl-coenzyme M reductase is profoundly affected by several unique post-translational modifications3–6, such as a unique C-methylation reaction catalysed by methanogenesis marker protein 10 (Mmp10), a radical S-adenosyl-l-methionine (SAM) enzyme7,8. Here we report the spectroscopic investigation and atomic resolution structure of Mmp10 from Methanosarcina acetivorans, a unique B12 (cobalamin)-dependent radical SAM enzyme9. The structure of Mmp10 reveals a unique enzyme architecture with four metallic centres and critical structural features involved in the control of catalysis. In addition, the structure of the enzyme–substrate complex offers a glimpse into a B12-dependent radical SAM enzyme in a precatalytic state. By combining electron paramagnetic resonance spectroscopy, structural biology and biochemistry, our study illuminates the mechanism by which the emerging superfamily of B12-dependent radical SAM enzymes catalyse chemically challenging alkylation reactions and identifies distinctive active site rearrangements to provide a structural rationale for the dual use of the SAM cofactor for radical and nucleophilic chemistry.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-021-04355-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:602:y:2022:i:7896:d:10.1038_s41586-021-04355-9

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-04355-9

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:602:y:2022:i:7896:d:10.1038_s41586-021-04355-9