Recovery time of a plasma-wakefield accelerator
R. D’Arcy (),
J. Chappell,
J. Beinortaite,
S. Diederichs,
G. Boyle,
B. Foster,
M. J. Garland,
P. Gonzalez Caminal,
C. A. Lindstrøm,
G. Loisch,
S. Schreiber,
S. Schröder,
R. J. Shalloo,
M. Thévenet,
S. Wesch,
M. Wing and
J. Osterhoff
Additional contact information
R. D’Arcy: Deutsches Elektronen-Synchrotron DESY
J. Chappell: University College London
J. Beinortaite: Deutsches Elektronen-Synchrotron DESY
S. Diederichs: Deutsches Elektronen-Synchrotron DESY
G. Boyle: Deutsches Elektronen-Synchrotron DESY
B. Foster: University of Oxford
M. J. Garland: Deutsches Elektronen-Synchrotron DESY
P. Gonzalez Caminal: Deutsches Elektronen-Synchrotron DESY
C. A. Lindstrøm: Deutsches Elektronen-Synchrotron DESY
G. Loisch: Deutsches Elektronen-Synchrotron DESY
S. Schreiber: Deutsches Elektronen-Synchrotron DESY
S. Schröder: Deutsches Elektronen-Synchrotron DESY
R. J. Shalloo: Deutsches Elektronen-Synchrotron DESY
M. Thévenet: Deutsches Elektronen-Synchrotron DESY
S. Wesch: Deutsches Elektronen-Synchrotron DESY
M. Wing: Deutsches Elektronen-Synchrotron DESY
J. Osterhoff: Deutsches Elektronen-Synchrotron DESY
Nature, 2022, vol. 603, issue 7899, 58-62
Abstract:
Abstract The interaction of intense particle bunches with plasma can give rise to plasma wakes1,2 capable of sustaining gigavolt-per-metre electric fields3,4, which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology5. Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology6,7. Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-021-04348-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:603:y:2022:i:7899:d:10.1038_s41586-021-04348-8
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-04348-8
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().