Activation of STING by targeting a pocket in the transmembrane domain
Defen Lu,
Guijun Shang,
Jie Li,
Yong Lu,
Xiao-chen Bai () and
Xuewu Zhang ()
Additional contact information
Defen Lu: University of Texas Southwestern Medical Center
Guijun Shang: University of Texas Southwestern Medical Center
Jie Li: University of Texas Southwestern Medical Center
Yong Lu: University of Texas Southwestern Medical Center
Xiao-chen Bai: University of Texas Southwestern Medical Center
Xuewu Zhang: University of Texas Southwestern Medical Center
Nature, 2022, vol. 604, issue 7906, 557-562
Abstract:
Abstract Stimulator of interferon genes (STING) is an adaptor protein in innate immunity against DNA viruses or bacteria1–5. STING-mediated immunity could be exploited in the development of vaccines or cancer immunotherapies. STING is a transmembrane dimeric protein that is located in the endoplasmic reticulum or in the Golgi apparatus. STING is activated by the binding of its cytoplasmic ligand-binding domain to cyclic dinucleotides that are produced by the DNA sensor cyclic GMP-AMP (cGAMP) synthase or by invading bacteria1,6,7. Cyclic dinucleotides induce a conformational change in the STING ligand-binding domain, which leads to a high-order oligomerization of STING that is essential for triggering the downstream signalling pathways8,9. However, the cGAMP-induced STING oligomers tend to dissociate in solution and have not been resolved to high resolution, which limits our understanding of the activation mechanism. Here we show that a small-molecule agonist, compound 53 (C53)10, promotes the oligomerization and activation of human STING through a mechanism orthogonal to that of cGAMP. We determined a cryo-electron microscopy structure of STING bound to both C53 and cGAMP, revealing a stable oligomer that is formed by side-by-side packing and has a curled overall shape. Notably, C53 binds to a cryptic pocket in the STING transmembrane domain, between the two subunits of the STING dimer. This binding triggers outward shifts of transmembrane helices in the dimer, and induces inter-dimer interactions between these helices to mediate the formation of the high-order oligomer. Our functional analyses show that cGAMP and C53 together induce stronger activation of STING than either ligand alone.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-04559-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:604:y:2022:i:7906:d:10.1038_s41586-022-04559-7
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-04559-7
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().