EconPapers    
Economics at your fingertips  
 

Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity

Samuel J. Hobbs, Tanita Wein, Allen Lu, Benjamin R. Morehouse, Julia Schnabel, Azita Leavitt, Erez Yirmiya, Rotem Sorek and Philip J. Kranzusch ()
Additional contact information
Samuel J. Hobbs: Harvard Medical School
Tanita Wein: Weizmann Institute of Science
Allen Lu: Harvard Medical School
Benjamin R. Morehouse: Harvard Medical School
Julia Schnabel: Harvard Medical School
Azita Leavitt: Weizmann Institute of Science
Erez Yirmiya: Weizmann Institute of Science
Rotem Sorek: Weizmann Institute of Science
Philip J. Kranzusch: Harvard Medical School

Nature, 2022, vol. 605, issue 7910, 522-526

Abstract: Abstract The cyclic oligonucleotide-based antiphage signalling system (CBASS) and the pyrimidine cyclase system for antiphage resistance (Pycsar) are antiphage defence systems in diverse bacteria that use cyclic nucleotide signals to induce cell death and prevent viral propagation1,2. Phages use several strategies to defeat host CRISPR and restriction-modification systems3–10, but no mechanisms are known to evade CBASS and Pycsar immunity. Here we show that phages encode anti-CBASS (Acb) and anti-Pycsar (Apyc) proteins that counteract defence by specifically degrading cyclic nucleotide signals that activate host immunity. Using a biochemical screen of 57 phages in Escherichia coli and Bacillus subtilis, we discover Acb1 from phage T4 and Apyc1 from phage SBSphiJ as founding members of distinct families of immune evasion proteins. Crystal structures of Acb1 in complex with 3′3′-cyclic GMP–AMP define a mechanism of metal-independent hydrolysis 3′ of adenosine bases, enabling broad recognition and degradation of cyclic dinucleotide and trinucleotide CBASS signals. Structures of Apyc1 reveal a metal-dependent cyclic NMP phosphodiesterase that uses relaxed specificity to target Pycsar cyclic pyrimidine mononucleotide signals. We show that Acb1 and Apyc1 block downstream effector activation and protect from CBASS and Pycsar defence in vivo. Active Acb1 and Apyc1 enzymes are conserved in phylogenetically diverse phages, demonstrating that cleavage of host cyclic nucleotide signals is a key strategy of immune evasion in phage biology.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41586-022-04716-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:605:y:2022:i:7910:d:10.1038_s41586-022-04716-y

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-022-04716-y

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:605:y:2022:i:7910:d:10.1038_s41586-022-04716-y