EconPapers    
Economics at your fingertips  
 

Cilia metasurfaces for electronically programmable microfluidic manipulation

Wei Wang (), Qingkun Liu (), Ivan Tanasijevic, Michael F. Reynolds, Alejandro J. Cortese, Marc Z. Miskin, Michael C. Cao, David A. Muller, Alyosha C. Molnar, Eric Lauga, Paul L. McEuen and Itai Cohen ()
Additional contact information
Wei Wang: Cornell University
Qingkun Liu: Cornell University
Ivan Tanasijevic: University of Cambridge
Michael F. Reynolds: Cornell University
Alejandro J. Cortese: Cornell University
Marc Z. Miskin: University of Pennsylvania
Michael C. Cao: Cornell University
David A. Muller: Cornell University
Alyosha C. Molnar: Cornell University
Eric Lauga: University of Cambridge
Paul L. McEuen: Cornell University
Itai Cohen: Cornell University

Nature, 2022, vol. 605, issue 7911, 681-686

Abstract: Abstract Cilial pumping is a powerful strategy used by biological organisms to control and manipulate fluids at the microscale. However, despite numerous recent advances in optically, magnetically and electrically driven actuation, development of an engineered cilial platform with the potential for applications has remained difficult to realize1–6. Here we report on active metasurfaces of electronically actuated artificial cilia that can create arbitrary flow patterns in liquids near a surface. We first create voltage-actuated cilia that generate non-reciprocal motions to drive surface flows at tens of microns per second at actuation voltages of 1 volt. We then show that a cilia unit cell can locally create a range of elemental flow geometries. By combining these unit cells, we create an active cilia metasurface that can generate and switch between any desired surface flow pattern. Finally, we integrate the cilia with a light-powered complementary metal–oxide–semiconductor (CMOS) clock circuit to demonstrate wireless operation. As a proof of concept, we use this circuit to output voltage pulses with various phase delays to demonstrate improved pumping efficiency using metachronal waves. These powerful results, demonstrated experimentally and confirmed using theoretical computations, illustrate a pathway towards fine-scale microfluidic manipulation, with applications from microfluidic pumping to microrobotic locomotion.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-022-04645-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:605:y:2022:i:7911:d:10.1038_s41586-022-04645-w

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-022-04645-w

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:605:y:2022:i:7911:d:10.1038_s41586-022-04645-w