In situ recording of Mars soundscape
S. Maurice (),
B. Chide (),
N. Murdoch,
R. D. Lorenz,
D. Mimoun,
R. C. Wiens,
A. Stott,
X. Jacob,
T. Bertrand,
F. Montmessin,
N. L. Lanza,
C. Alvarez-Llamas,
S. M. Angel,
M. Aung,
J. Balaram,
O. Beyssac,
A. Cousin,
G. Delory,
O. Forni,
T. Fouchet,
O. Gasnault,
H. Grip,
M. Hecht,
J. Hoffman,
J. Laserna,
J. Lasue,
J. Maki,
J. McClean,
P.-Y. Meslin,
S. Mouélic,
A. Munguira,
C. E. Newman,
J. A. Rodríguez Manfredi,
J. Moros,
A. Ollila,
P. Pilleri,
S. Schröder,
M. Torre Juárez,
T. Tzanetos,
K. M. Stack,
K. Farley and
K. Williford
Additional contact information
S. Maurice: Université de Toulouse 3 Paul Sabatier, CNRS, CNES
B. Chide: Los Alamos National Laboratory
N. Murdoch: Université de Toulouse
R. D. Lorenz: Space Exploration Sector, Johns Hopkins Applied Physics Laboratory
D. Mimoun: Université de Toulouse
R. C. Wiens: Los Alamos National Laboratory
A. Stott: Université de Toulouse
X. Jacob: Université de Toulouse 3 Paul Sabatier, INP, CNRS
T. Bertrand: Sorbonne Université, Université Paris Diderot
F. Montmessin: Université Saint-Quentin-en-Yvelines, Sorbonne Université
N. L. Lanza: Los Alamos National Laboratory
C. Alvarez-Llamas: Universidad de Málaga
S. M. Angel: University of South Carolina
M. Aung: California Institute of Technology
J. Balaram: California Institute of Technology
O. Beyssac: CNRS, Sorbonne Université, MNHN
A. Cousin: Université de Toulouse 3 Paul Sabatier, CNRS, CNES
G. Delory: Heliospace Corporation
O. Forni: Université de Toulouse 3 Paul Sabatier, CNRS, CNES
T. Fouchet: Sorbonne Université, Université Paris Diderot
O. Gasnault: Université de Toulouse 3 Paul Sabatier, CNRS, CNES
H. Grip: California Institute of Technology
M. Hecht: Massachusetts Institute of Technology
J. Hoffman: Massachusetts Institute of Technology
J. Laserna: Universidad de Málaga
J. Lasue: Université de Toulouse 3 Paul Sabatier, CNRS, CNES
J. Maki: California Institute of Technology
J. McClean: Massachusetts Institute of Technology
P.-Y. Meslin: Université de Toulouse 3 Paul Sabatier, CNRS, CNES
S. Mouélic: Nantes Université, Université Angers
A. Munguira: Universidad del País Vasco UPV/EHU
C. E. Newman: Aeolis Corporation
J. A. Rodríguez Manfredi: Centro de Astrobiología (INTA-CSIC)
J. Moros: Universidad de Málaga
A. Ollila: Los Alamos National Laboratory
P. Pilleri: Université de Toulouse 3 Paul Sabatier, CNRS, CNES
S. Schröder: Institute of Optical Sensor Systems
M. Torre Juárez: California Institute of Technology
T. Tzanetos: California Institute of Technology
K. M. Stack: California Institute of Technology
K. Farley: California Institute of Technology
K. Williford: California Institute of Technology
Nature, 2022, vol. 605, issue 7911, 653-658
Abstract:
Abstract Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2–4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s−1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-04679-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:605:y:2022:i:7911:d:10.1038_s41586-022-04679-0
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-04679-0
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().