Qubit teleportation between non-neighbouring nodes in a quantum network
S. L. N. Hermans,
M. Pompili,
H. K. C. Beukers,
S. Baier,
J. Borregaard and
R. Hanson ()
Additional contact information
S. L. N. Hermans: Delft University of Technology
M. Pompili: Delft University of Technology
H. K. C. Beukers: Delft University of Technology
S. Baier: Delft University of Technology
J. Borregaard: Delft University of Technology
R. Hanson: Delft University of Technology
Nature, 2022, vol. 605, issue 7911, 663-668
Abstract:
Abstract Future quantum internet applications will derive their power from the ability to share quantum information across the network1,2. Quantum teleportation allows for the reliable transfer of quantum information between distant nodes, even in the presence of highly lossy network connections3. Although many experimental demonstrations have been performed on different quantum network platforms4–10, moving beyond directly connected nodes has, so far, been hindered by the demanding requirements on the pre-shared remote entanglement, joint qubit readout and coherence times. Here we realize quantum teleportation between remote, non-neighbouring nodes in a quantum network. The network uses three optically connected nodes based on solid-state spin qubits. The teleporter is prepared by establishing remote entanglement on the two links, followed by entanglement swapping on the middle node and storage in a memory qubit. We demonstrate that, once successful preparation of the teleporter is heralded, arbitrary qubit states can be teleported with fidelity above the classical bound, even with unit efficiency. These results are enabled by key innovations in the qubit readout procedure, active memory qubit protection during entanglement generation and tailored heralding that reduces remote entanglement infidelities. Our work demonstrates a prime building block for future quantum networks and opens the door to exploring teleportation-based multi-node protocols and applications2,11–13.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-022-04697-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:605:y:2022:i:7911:d:10.1038_s41586-022-04697-y
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-04697-y
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().