Two-dimensional materials prospects for non-volatile spintronic memories
Hyunsoo Yang (),
Sergio O. Valenzuela (),
Mairbek Chshiev,
Sébastien Couet,
Bernard Dieny,
Bruno Dlubak,
Albert Fert,
Kevin Garello,
Matthieu Jamet,
Dae-Eun Jeong,
Kangho Lee,
Taeyoung Lee,
Marie-Blandine Martin,
Gouri Sankar Kar,
Pierre Sénéor,
Hyeon-Jin Shin and
Stephan Roche ()
Additional contact information
Hyunsoo Yang: National University of Singapore
Sergio O. Valenzuela: Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST
Mairbek Chshiev: Université Grenoble Alpes, CEA, CNRS, SPINTEC
Sébastien Couet: Imec
Bernard Dieny: Université Grenoble Alpes, CEA, CNRS, SPINTEC
Bruno Dlubak: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
Albert Fert: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
Kevin Garello: Université Grenoble Alpes, CEA, CNRS, SPINTEC
Matthieu Jamet: Université Grenoble Alpes, CEA, CNRS, SPINTEC
Dae-Eun Jeong: R&D Center, Samsung Electronics Co.
Kangho Lee: Foundry Business, Samsung Electronics Co.
Taeyoung Lee: GLOBALFOUNDRIES Singapore Pte. Ltd.
Marie-Blandine Martin: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
Gouri Sankar Kar: Imec
Pierre Sénéor: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
Hyeon-Jin Shin: Inorganic Material Lab, Samsung Advanced Institute of Technology (SAIT)
Stephan Roche: Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST
Nature, 2022, vol. 606, issue 7915, 663-673
Abstract:
Abstract Non-volatile magnetic random-access memories (MRAMs), such as spin-transfer torque MRAM and next-generation spin–orbit torque MRAM, are emerging as key to enabling low-power technologies, which are expected to spread over large markets from embedded memories to the Internet of Things. Concurrently, the development and performances of devices based on two-dimensional van der Waals heterostructures bring ultracompact multilayer compounds with unprecedented material-engineering capabilities. Here we provide an overview of the current developments and challenges in regard to MRAM, and then outline the opportunities that can arise by incorporating two-dimensional material technologies. We highlight the fundamental properties of atomically smooth interfaces, the reduced material intermixing, the crystal symmetries and the proximity effects as the key drivers for possible disruptive improvements for MRAM at advanced technology nodes.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-04768-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:606:y:2022:i:7915:d:10.1038_s41586-022-04768-0
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-04768-0
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().