Structural basis of sodium-dependent bile salt uptake into the liver
Kapil Goutam,
Francesco S. Ielasi,
Els Pardon,
Jan Steyaert and
Nicolas Reyes ()
Additional contact information
Kapil Goutam: University of Bordeaux, CNRS-UMR5234
Francesco S. Ielasi: Institut Pasteur
Els Pardon: Vrije Universiteit Brussel, VUB
Jan Steyaert: Vrije Universiteit Brussel, VUB
Nicolas Reyes: University of Bordeaux, CNRS-UMR5234
Nature, 2022, vol. 606, issue 7916, 1015-1020
Abstract:
Abstract The liver takes up bile salts from blood to generate bile, enabling absorption of lipophilic nutrients and excretion of metabolites and drugs1. Human Na+–taurocholate co-transporting polypeptide (NTCP) is the main bile salt uptake system in liver. NTCP is also the cellular entry receptor of human hepatitis B and D viruses2,3 (HBV/HDV), and has emerged as an important target for antiviral drugs4. However, the molecular mechanisms underlying NTCP transport and viral receptor functions remain incompletely understood. Here we present cryo-electron microscopy structures of human NTCP in complexes with nanobodies, revealing key conformations of its transport cycle. NTCP undergoes a conformational transition opening a wide transmembrane pore that serves as the transport pathway for bile salts, and exposes key determinant residues for HBV/HDV binding to the outside of the cell. A nanobody that stabilizes pore closure and inward-facing states impairs recognition of the HBV/HDV receptor-binding domain preS1, demonstrating binding selectivity of the viruses for open-to-outside over inward-facing conformations of the NTCP transport cycle. These results provide molecular insights into NTCP ‘gated-pore’ transport and HBV/HDV receptor recognition mechanisms, and are expected to help with development of liver disease therapies targeting NTCP.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-04723-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:606:y:2022:i:7916:d:10.1038_s41586-022-04723-z
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-04723-z
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().