Non-Hermitian morphing of topological modes
Wei Wang,
Xulong Wang and
Guancong Ma ()
Additional contact information
Wei Wang: Hong Kong Baptist University
Xulong Wang: Hong Kong Baptist University
Guancong Ma: Hong Kong Baptist University
Nature, 2022, vol. 608, issue 7921, 50-55
Abstract:
Abstract Topological modes (TMs) are usually localized at defects or boundaries of a much larger topological lattice1,2. Recent studies of non-Hermitian band theories unveiled the non-Hermitian skin effect (NHSE), by which the bulk states collapse to the boundary as skin modes3–6. Here we explore the NHSE to reshape the wavefunctions of TMs by delocalizing them from the boundary. At a critical non-Hermitian parameter, the in-gap TMs even become completely extended in the entire bulk lattice, forming an ‘extended mode outside of a continuum’. These extended modes are still protected by bulk-band topology, making them robust against local disorders. The morphing of TM wavefunction is experimentally realized in active mechanical lattices in both one-dimensional and two-dimensional topological lattices, as well as in a higher-order topological lattice. Furthermore, by the judicious engineering of the non-Hermiticity distribution, the TMs can deform into a diversity of shapes. Our findings not only broaden and deepen the current understanding of the TMs and the NHSE but also open new grounds for topological applications.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-04929-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:608:y:2022:i:7921:d:10.1038_s41586-022-04929-1
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-04929-1
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().