Formation of moiré interlayer excitons in space and time
David Schmitt,
Jan Philipp Bange,
Wiebke Bennecke,
AbdulAziz AlMutairi,
Giuseppe Meneghini,
Kenji Watanabe,
Takashi Taniguchi,
Daniel Steil,
D. Russell Luke,
R. Thomas Weitz,
Sabine Steil,
G. S. Matthijs Jansen,
Samuel Brem,
Ermin Malic,
Stephan Hofmann,
Marcel Reutzel () and
Stefan Mathias ()
Additional contact information
David Schmitt: I. Physikalisches Institut, Georg-August-Universität Göttingen
Jan Philipp Bange: I. Physikalisches Institut, Georg-August-Universität Göttingen
Wiebke Bennecke: I. Physikalisches Institut, Georg-August-Universität Göttingen
AbdulAziz AlMutairi: University of Cambridge
Giuseppe Meneghini: Philipps-Universität
Kenji Watanabe: National Institute for Materials Science
Takashi Taniguchi: National Institute for Materials Science
Daniel Steil: I. Physikalisches Institut, Georg-August-Universität Göttingen
D. Russell Luke: Institute for Numerical and Applied Mathematics, Georg-August-Universität Göttingen
R. Thomas Weitz: I. Physikalisches Institut, Georg-August-Universität Göttingen
Sabine Steil: I. Physikalisches Institut, Georg-August-Universität Göttingen
G. S. Matthijs Jansen: I. Physikalisches Institut, Georg-August-Universität Göttingen
Samuel Brem: Philipps-Universität
Ermin Malic: Philipps-Universität
Stephan Hofmann: University of Cambridge
Marcel Reutzel: I. Physikalisches Institut, Georg-August-Universität Göttingen
Stefan Mathias: I. Physikalisches Institut, Georg-August-Universität Göttingen
Nature, 2022, vol. 608, issue 7923, 499-503
Abstract:
Abstract Moiré superlattices in atomically thin van der Waals heterostructures hold great promise for extended control of electronic and valleytronic lifetimes1–7, the confinement of excitons in artificial moiré lattices8–13 and the formation of exotic quantum phases14–18. Such moiré-induced emergent phenomena are particularly strong for interlayer excitons, where the hole and the electron are localized in different layers of the heterostructure19,20. To exploit the full potential of correlated moiré and exciton physics, a thorough understanding of the ultrafast interlayer exciton formation process and the real-space wavefunction confinement is indispensable. Here we show that femtosecond photoemission momentum microscopy provides quantitative access to these key properties of the moiré interlayer excitons. First, we elucidate that interlayer excitons are dominantly formed through femtosecond exciton–phonon scattering and subsequent charge transfer at the interlayer-hybridized Σ valleys. Second, we show that interlayer excitons exhibit a momentum fingerprint that is a direct hallmark of the superlattice moiré modification. Third, we reconstruct the wavefunction distribution of the electronic part of the exciton and compare the size with the real-space moiré superlattice. Our work provides direct access to interlayer exciton formation dynamics in space and time and reveals opportunities to study correlated moiré and exciton physics for the future realization of exotic quantum phases of matter.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-04977-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:608:y:2022:i:7923:d:10.1038_s41586-022-04977-7
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-04977-7
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().