Natural switches in behaviour rapidly modulate hippocampal coding
Ayelet Sarel,
Shaked Palgi,
Dan Blum,
Johnatan Aljadeff,
Liora Las () and
Nachum Ulanovsky ()
Additional contact information
Ayelet Sarel: Weizmann Institute of Science
Shaked Palgi: Weizmann Institute of Science
Dan Blum: Weizmann Institute of Science
Johnatan Aljadeff: Weizmann Institute of Science
Liora Las: Weizmann Institute of Science
Nachum Ulanovsky: Weizmann Institute of Science
Nature, 2022, vol. 609, issue 7925, 119-127
Abstract:
Abstract Throughout their daily lives, animals and humans often switch between different behaviours. However, neuroscience research typically studies the brain while the animal is performing one behavioural task at a time, and little is known about how brain circuits represent switches between different behaviours. Here we tested this question using an ethological setting: two bats flew together in a long 135 m tunnel, and switched between navigation when flying alone (solo) and collision avoidance as they flew past each other (cross-over). Bats increased their echolocation click rate before each cross-over, indicating attention to the other bat1–9. Hippocampal CA1 neurons represented the bat’s own position when flying alone (place coding10–14). Notably, during cross-overs, neurons switched rapidly to jointly represent the interbat distance by self-position. This neuronal switch was very fast—as fast as 100 ms—which could be revealed owing to the very rapid natural behavioural switch. The neuronal switch correlated with the attention signal, as indexed by echolocation. Interestingly, the different place fields of the same neuron often exhibited very different tuning to interbat distance, creating a complex non-separable coding of position by distance. Theoretical analysis showed that this complex representation yields more efficient coding. Overall, our results suggest that during dynamic natural behaviour, hippocampal neurons can rapidly switch their core computation to represent the relevant behavioural variables, supporting behavioural flexibility.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-05112-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:609:y:2022:i:7925:d:10.1038_s41586-022-05112-2
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-05112-2
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().