A sustained high-temperature fusion plasma regime facilitated by fast ions
H. Han,
S. J. Park,
C. Sung,
Jia-Ning Kang,
Y. H. Lee,
J. Chung,
T. S. Hahm,
B. Kim,
J.-K. Park,
J. G. Bak,
M. S. Cha,
G. J. Choi,
M. J. Choi,
J. Gwak,
S. H. Hahn,
J. Jang,
K. C. Lee,
J. H. Kim,
S. K. Kim,
W. C. Kim,
J. Ko,
W. H. Ko,
C. Y. Lee,
J. H. Lee,
J. H. Lee,
J. K. Lee,
J. P. Lee,
K. D. Lee,
Y. S. Park,
J. Seo,
S. M. Yang,
S. W. Yoon and
Y.-S. Na ()
Additional contact information
H. Han: Korea Institute of Fusion Energy
S. J. Park: Seoul National University
C. Sung: Korea Advanced Institute of Science and Technology
Y. H. Lee: Korea Institute of Fusion Energy
J. Chung: Korea Institute of Fusion Energy
T. S. Hahm: Seoul National University
B. Kim: Seoul National University
J.-K. Park: Princeton Plasma Physics Laboratory
J. G. Bak: Korea Institute of Fusion Energy
M. S. Cha: Seoul National University
G. J. Choi: Seoul National University
M. J. Choi: Korea Institute of Fusion Energy
J. Gwak: Seoul National University
S. H. Hahn: Korea Institute of Fusion Energy
J. Jang: Korea Institute of Fusion Energy
K. C. Lee: Korea Institute of Fusion Energy
J. H. Kim: Korea Institute of Fusion Energy
S. K. Kim: Princeton Plasma Physics Laboratory
W. C. Kim: Korea Institute of Fusion Energy
J. Ko: Korea Institute of Fusion Energy
W. H. Ko: Korea Institute of Fusion Energy
C. Y. Lee: Seoul National University
J. H. Lee: Korea Institute of Fusion Energy
J. H. Lee: Korea Institute of Fusion Energy
J. K. Lee: Korea Institute of Fusion Energy
J. P. Lee: Hanyang University
K. D. Lee: Korea Institute of Fusion Energy
Y. S. Park: Columbia University
J. Seo: Seoul National University
S. M. Yang: Princeton Plasma Physics Laboratory
S. W. Yoon: Korea Institute of Fusion Energy
Y.-S. Na: Seoul National University
Nature, 2022, vol. 609, issue 7926, 269-275
Abstract:
Abstract Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources1. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds2,3. Here we report experiments at the Korea Superconducting Tokamak Advanced Research4 device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-05008-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:609:y:2022:i:7926:d:10.1038_s41586-022-05008-1
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-05008-1
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().