A fast radio burst source at a complex magnetized site in a barred galaxy
H. Xu,
J. R. Niu,
P. Chen,
K. J. Lee (),
W. W. Zhu (),
S. Dong (),
B. Zhang (),
J. C. Jiang,
B. J. Wang,
J. W. Xu,
C. F. Zhang,
H. Fu,
A. V. Filippenko,
E. W. Peng,
D. J. Zhou,
Y. K. Zhang,
P. Wang,
Y. Feng,
Y. Li,
T. G. Brink,
D. Z. Li,
W. Lu,
Y. P. Yang,
R. N. Caballero,
C. Cai,
M. Z. Chen,
Z. G. Dai,
S. G. Djorgovski,
A. Esamdin,
H. Q. Gan,
P. Guhathakurta,
J. L. Han,
L. F. Hao,
Y. X. Huang,
P. Jiang,
C. K. Li,
D. Li,
H. Li,
X. Q. Li,
Z. X. Li,
Z. Y. Liu,
R. Luo,
Y. P. Men,
C. H. Niu,
W. X. Peng,
L. Qian,
L. M. Song,
D. Stern,
A. Stockton,
J. H. Sun,
F. Y. Wang,
M. Wang,
N. Wang,
W. Y. Wang,
X. F. Wu,
S. Xiao,
S. L. Xiong,
Y. H. Xu,
R. X. Xu,
J. Yang,
X. Yang,
R. Yao,
Q. B. Yi,
Y. L. Yue,
D. J. Yu,
W. F. Yu,
J. P. Yuan,
B. B. Zhang,
S. B. Zhang,
S. N. Zhang,
Y. Zhao,
W. K. Zheng,
Y. Zhu and
J. H. Zou
Additional contact information
H. Xu: Peking University
J. R. Niu: Chinese Academy of Sciences
P. Chen: Peking University
K. J. Lee: Peking University
W. W. Zhu: Chinese Academy of Sciences
S. Dong: Peking University
B. Zhang: University of Nevada, Las Vegas
J. C. Jiang: Peking University
B. J. Wang: Peking University
J. W. Xu: Peking University
C. F. Zhang: Peking University
H. Fu: University of Iowa
A. V. Filippenko: University of California, Berkeley
E. W. Peng: Peking University
D. J. Zhou: Chinese Academy of Sciences
Y. K. Zhang: Chinese Academy of Sciences
P. Wang: Chinese Academy of Sciences
Y. Feng: Chinese Academy of Sciences
Y. Li: Chinese Academy of Sciences
T. G. Brink: University of California, Berkeley
D. Z. Li: California Institute of Technology
W. Lu: Princeton University
Y. P. Yang: Yunnan University
R. N. Caballero: Peking University
C. Cai: Chinese Academy of Sciences
M. Z. Chen: Chinese Academy of Sciences
Z. G. Dai: University of Science and Technology of China
S. G. Djorgovski: California Institute of Technology
A. Esamdin: Chinese Academy of Sciences
H. Q. Gan: Chinese Academy of Sciences
P. Guhathakurta: University of California, Santa Cruz
J. L. Han: Chinese Academy of Sciences
L. F. Hao: Chinese Academy of Sciences
Y. X. Huang: Chinese Academy of Sciences
P. Jiang: Chinese Academy of Sciences
C. K. Li: Chinese Academy of Sciences
D. Li: Chinese Academy of Sciences
H. Li: Chinese Academy of Sciences
X. Q. Li: Chinese Academy of Sciences
Z. X. Li: Chinese Academy of Sciences
Z. Y. Liu: Chinese Academy of Sciences
R. Luo: CSIRO Space and Astronomy
Y. P. Men: Max-Planck-Institut für Radioastronomie
C. H. Niu: Chinese Academy of Sciences
W. X. Peng: Chinese Academy of Sciences
L. Qian: Chinese Academy of Sciences
L. M. Song: Chinese Academy of Sciences
D. Stern: California Institute of Technology
A. Stockton: University of Hawaii
J. H. Sun: Chinese Academy of Sciences
F. Y. Wang: Nanjing University
M. Wang: Chinese Academy of Sciences
N. Wang: Chinese Academy of Sciences
W. Y. Wang: Peking University
X. F. Wu: Chinese Academy of Sciences
S. Xiao: Chinese Academy of Sciences
S. L. Xiong: Chinese Academy of Sciences
Y. H. Xu: Chinese Academy of Sciences
R. X. Xu: Peking University
J. Yang: Nanjing University
X. Yang: Chinese Academy of Sciences
R. Yao: Chinese Academy of Sciences
Q. B. Yi: Chinese Academy of Sciences
Y. L. Yue: Chinese Academy of Sciences
D. J. Yu: Chinese Academy of Sciences
W. F. Yu: Chinese Academy of Sciences
J. P. Yuan: Chinese Academy of Sciences
B. B. Zhang: Nanjing University
S. B. Zhang: Chinese Academy of Sciences
S. N. Zhang: Chinese Academy of Sciences
Y. Zhao: Chinese Academy of Sciences
W. K. Zheng: University of California, Berkeley
Y. Zhu: Chinese Academy of Sciences
J. H. Zou: Nanjing University
Nature, 2022, vol. 609, issue 7928, 685-688
Abstract:
Abstract Fast radio bursts (FRBs) are highly dispersed, millisecond-duration radio bursts1–3. Recent observations of a Galactic FRB4–8 suggest that at least some FRBs originate from magnetars, but the origin of cosmological FRBs is still not settled. Here we report the detection of 1,863 bursts in 82 h over 54 days from the repeating source FRB 20201124A (ref. 9). These observations show irregular short-time variation of the Faraday rotation measure (RM), which scrutinizes the density-weighted line-of-sight magnetic field strength, of individual bursts during the first 36 days, followed by a constant RM. We detected circular polarization in more than half of the burst sample, including one burst reaching a high fractional circular polarization of 75%. Oscillations in fractional linear and circular polarizations, as well as polarization angle as a function of wavelength, were detected. All of these features provide evidence for a complicated, dynamically evolving, magnetized immediate environment within about an astronomical unit (au; Earth–Sun distance) of the source. Our optical observations of its Milky-Way-sized, metal-rich host galaxy10–12 show a barred spiral, with the FRB source residing in a low-stellar-density interarm region at an intermediate galactocentric distance. This environment is inconsistent with a young magnetar engine formed during an extreme explosion of a massive star that resulted in a long gamma-ray burst or superluminous supernova.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-05071-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:609:y:2022:i:7928:d:10.1038_s41586-022-05071-8
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-05071-8
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().