EconPapers    
Economics at your fingertips  
 

Hippocampal astrocytes encode reward location

Adi Doron, Alon Rubin, Aviya Benmelech-Chovav, Netai Benaim, Tom Carmi, Ron Refaeli, Nechama Novick, Tirzah Kreisel, Yaniv Ziv and Inbal Goshen ()
Additional contact information
Adi Doron: The Hebrew University of Jerusalem
Alon Rubin: Weizmann Institute of Science
Aviya Benmelech-Chovav: The Hebrew University of Jerusalem
Netai Benaim: The Hebrew University of Jerusalem
Tom Carmi: The Hebrew University of Jerusalem
Ron Refaeli: The Hebrew University of Jerusalem
Nechama Novick: The Hebrew University of Jerusalem
Tirzah Kreisel: The Hebrew University of Jerusalem
Yaniv Ziv: Weizmann Institute of Science
Inbal Goshen: The Hebrew University of Jerusalem

Nature, 2022, vol. 609, issue 7928, 772-778

Abstract: Abstract Astrocytic calcium dynamics has been implicated in the encoding of sensory information1–5, and modulation of calcium in astrocytes has been shown to affect behaviour6–10. However, longitudinal investigation of the real-time calcium activity of astrocytes in the hippocampus of awake mice is lacking. Here we used two-photon microscopy to chronically image CA1 astrocytes as mice ran in familiar or new virtual environments to obtain water rewards. We found that astrocytes exhibit persistent ramping activity towards the reward location in a familiar environment, but not in a new one. Shifting the reward location within a familiar environment also resulted in diminished ramping. After additional training, as the mice became familiar with the new context or new reward location, the ramping was re-established. Using linear decoders, we could predict the location of the mouse in a familiar environment from astrocyte activity alone. We could not do the same in a new environment, suggesting that the spatial modulation of astrocytic activity is experience dependent. Our results indicate that astrocytes can encode the expected reward location in spatial contexts, thereby extending their known computational abilities and their role in cognitive functions.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-022-05146-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:609:y:2022:i:7928:d:10.1038_s41586-022-05146-6

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-022-05146-6

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:609:y:2022:i:7928:d:10.1038_s41586-022-05146-6