EconPapers    
Economics at your fingertips  
 

A universal coupling mechanism of respiratory complex I

Vladyslav Kravchuk, Olga Petrova, Domen Kampjut, Anna Wojciechowska-Bason, Zara Breese and Leonid Sazanov ()
Additional contact information
Vladyslav Kravchuk: Institute of Science and Technology Austria
Olga Petrova: Institute of Science and Technology Austria
Domen Kampjut: Institute of Science and Technology Austria
Anna Wojciechowska-Bason: MRC Mitochondrial Biology Unit
Zara Breese: MRC Mitochondrial Biology Unit
Leonid Sazanov: Institute of Science and Technology Austria

Nature, 2022, vol. 609, issue 7928, 808-814

Abstract: Abstract Complex I is the first enzyme in the respiratory chain, which is responsible for energy production in mitochondria and bacteria1. Complex I couples the transfer of two electrons from NADH to quinone and the translocation of four protons across the membrane2, but the coupling mechanism remains contentious. Here we present cryo-electron microscopy structures of Escherichia coli complex I (EcCI) in different redox states, including catalytic turnover. EcCI exists mostly in the open state, in which the quinone cavity is exposed to the cytosol, allowing access for water molecules, which enable quinone movements. Unlike the mammalian paralogues3, EcCI can convert to the closed state only during turnover, showing that closed and open states are genuine turnover intermediates. The open-to-closed transition results in the tightly engulfed quinone cavity being connected to the central axis of the membrane arm, a source of substrate protons. Consistently, the proportion of the closed state increases with increasing pH. We propose a detailed but straightforward and robust mechanism comprising a ‘domino effect’ series of proton transfers and electrostatic interactions: the forward wave (‘dominoes stacking’) primes the pump, and the reverse wave (‘dominoes falling’) results in the ejection of all pumped protons from the distal subunit NuoL. This mechanism explains why protons exit exclusively from the NuoL subunit and is supported by our mutagenesis data. We contend that this is a universal coupling mechanism of complex I and related enzymes.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41586-022-05199-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:609:y:2022:i:7928:d:10.1038_s41586-022-05199-7

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-022-05199-7

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:609:y:2022:i:7928:d:10.1038_s41586-022-05199-7