Anomalous slip in body-centred cubic metals
Daniel Caillard (),
Baptiste Bienvenu and
Emmanuel Clouet ()
Additional contact information
Daniel Caillard: CEMES-CNRS
Baptiste Bienvenu: Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique
Emmanuel Clouet: Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique
Nature, 2022, vol. 609, issue 7929, 936-941
Abstract:
Abstract Crystal strength and plastic flow are controlled by the motion and interaction of dislocations, the line defects carrying atomic shear increments. Whereas, in most crystals, deformation develops in the crystallographic planes in which the glide force acting on dislocations is maximum, plasticity in body-centred cubic metals is more complex. Slip systems in which the resolved shear stress is not the highest can dominate at low temperature, leading to anomalous slip1,2. Using in situ tensile tests in a transmission electron microscope we show that anomalous slip arises from the high mobility of multi-junctions3, that is, junctions between more than two dislocations, which glide at a velocity several orders of magnitude larger than single dislocations. These multi-junctions result from the interaction of a simple binary junction with a gliding dislocation. Although elasticity theory predicts that these binary junctions should be unstable in crystals with a weak elastic anisotropy such as tungsten, both experiments and atomistic simulations reveal that such junctions can be created under dynamic conditions, in agreement with the existence of anomalous slip in almost all body-centred cubic metals, including tungsten4,5.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-05087-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:609:y:2022:i:7929:d:10.1038_s41586-022-05087-0
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-05087-0
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().